Nowadays, pig has been chosen as the potential source of organs and cells for human to overcome a sever shortage of human material for clinical transplantation especially in the last 10 years by use of genetically modified swine. Consequently, the present study was conducted to give detailed information about the distribution of the blood vessels and bile ducts and their topographic relations, which may give a useful base for the hepatic segmentation in this animal aiming to provide a correct base for surgical procedures and liver transplantation. � The present study was conducted on 33 livers of pigs. Dissection, casting and radio-opaque techniques have been applied to show the different ramifications of the portal vein, hepatic artery and bile duct systems as well as their topographic relations with proposals of hepatic segmentation. The results revealed that, the caudate, right lateral and right medial lobes were supplied by R. dorsalis dexter and R. ventralis dexter of the portal vein in addition to R. dexter of the hepatic artery and right hepatic duct. The quadrate, left medial and left lateral lobes were supplied by the R. sinister of the portal vein and hepatic artery and left hepatic duct. � The liver of the pig could be divided into two independent segments; right and left. These two segments were separated by a segmental plane passed from the esophageal notch dorsally to the fossa of the gall bladder ventrally.
A dicephalous, 1-day-old, female goat kid was presented for anatomical study. Epoxy plastination slices (E12) were used successfully to explore this condition. They provided excellent anatomic and bone detail, demonstrating organ position, shared structures, and vascular anatomy. Sheet plastination (E12) was used as an optimal method to clarify how the two heads were united, especially the neuroanatomy. The plastinated transparent slices allowed detailed study of the anatomical structures, in a non-collapsed and non-dislocated state. Thus, we anatomically explored this rare condition without traditional dissection. The advantages of plastination extended to the preservation at room temperature of this case for further topographical investigation. To the authors' best knowledge, this is the first published report of plastination of a dicephalous goat.
The ubiquitin proteasome system has been validated as a target of cancer therapies evident by the US FDA approval of anticancer 20S proteasome inhibitors. Deubiquitinating enzymes (DUBs), an essential component of the ubiquitin proteasome system, regulate cellular processes through the removal of ubiquitin from ubiquitinated-tagged proteins. The deubiquitination process has been linked with cancer and other pathologies. As such, the study of proteasomal DUBs and their inhibitors has garnered interest as a novel strategy to improve current cancer therapies, especially for cancers resistant to 20S proteasome inhibitors. This article reviews proteasomal DUB inhibitors in the context of: discovery through rational design approach, discovery from searching natural products and discovery from repurposing old drugs, and offers a future perspective.
Recent studies support the hypothesis that the adverse effects of early-life adversity and transgenerational stress on neural plasticity and behavior are mediated by inflammation. The objective of the present study was to investigate the immune and behavioral programing effects of intranasal (IN) vasopressin (AVP) and oxytocin (OXT) treatment of chronic social stress (CSS)-exposed F1 dams on F2 juvenile female offspring. It was hypothesized that maternal AVP and OXT treatment would have preventative effects on social stress-induced deficits in offspring anxiety and social behavior and that these effects would be associated with changes in interferon-γ (IFNγ). Control and CSS-exposed F1 dams were administered IN saline, AVP, or OXT during lactation and the F2 juvenile female offspring were assessed for basal plasma IFNγ and perseverative, anxiety, and social behavior. CSS F2 female juvenile offspring had elevated IFNγ levels and exhibited increased repetitive/perseverative and anxiety behaviors and deficits in social behavior. These effects were modulated by AVP and OXT in a context- and behavior-dependent manner, with OXT exhibiting preventative effects on repetitive and anxiety behaviors and AVP possessing preventative effects on social behavior deficits and anxiety. Basal IFNγ levels were elevated in the F2 offspring of OXT-treated F1 dams, but IFNγ was not correlated with the behavioral effects. These results support the hypothesis that maternal AVP and OXT treatment have context- and behavior-specific effects on peripheral IFNγ levels and perseverative, anxiety, and social behaviors in the female offspring of early-life social stress-exposed dams. Both maternal AVP and OXT are effective at preventing social stress-induced increases in self-directed measures of anxiety, and AVP is particularly effective at preventing impairments in overall social contact. OXT is specifically effective at preventing repetitive/perseverative behaviors, yet is ineffective at preventing deficits in overall social behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.