T he Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission landed on Mars on 26 November 2018 in Elysium Planitia 1,2 , 38 years after the end of Viking 2 lander operations. At the time, Viking's seismometer 3 did not succeed in making any convincing Marsquake detections, due to its on-deck installation and high wind sensitivity. InSight therefore provides the first direct geophysical in situ investigations of Mars's interior structure by seismology 1,4. The Seismic Experiment for Interior Structure (SEIS) 5 monitors the ground acceleration with six axes: three Very Broad Band (VBB) oblique axes, sensitive to frequencies from tidal up to 10 Hz, and one vertical and two horizontal Short Period (SP) axes, covering frequencies from ~0.1 Hz to 50 Hz. SEIS is complemented by the APSS experiment 6 (InSight Auxiliary Payload Sensor Suite), which includes pressure and TWINS (Temperature and Winds for InSight) sensors and a magnetometer. These sensors monitor the atmospheric sources of seismic noise and signals 7. After seven sols (Martian days) of SP on-deck operation, with seismic noise comparable to that of Viking 3 , InSight's robotic arm 8 placed SEIS on the ground 22 sols after landing, at a location selected through analysis of InSight's imaging data 9. After levelling and noise assessment, the Wind and Thermal Shield was deployed on sol 66 (2 February 2019). A few days later, all six axes started continuous seismic recording, at 20 samples per second (sps) for VBBs and 100 sps for SPs. After onboard decimation, continuous records at rates from 2 to 20 sps and event records 5 at 100 sps are transmitted. Several layers of thermal protection and very low self-noise enable the SEIS VBB sensors to record the daily variation of the
By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars’ surface the SEIS ( S eismic E xperiment for I nternal S tructure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking’s Mars seismic monitoring by a factor of at 1 Hz and at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars’ surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of at epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution. Electronic Supplementary Material The online version of this article (10.1007/s11214-018-0574-6) contains supplementary material, which is available to authorized users.
ol 185 was a typical sol on Mars (a Mars sol is 24 h 39.5 min long, and we number sols starting from landing). The ground acceleration spectrogram recorded by the very broadband (VBB) instrument of SEIS 1-3 (Seismic Experiment for Interior Structure; Fig. 1a) is dominated by the noise produced by the weakly turbulent night-time winds and by the powerful, thermally driven convective turbulence during the day 4. Around 17:00 local mean solar time (lmst), the wind fluctuations die out quite suddenly and the planet remains very quiet into the early night hours. Several distinctive features can be seen every sol on Mars. Lander vibrations activated by the wind appear as horizontal thin lines with frequency varying daily as a result of temperature variations of the lander; almost invisible during quiet hours, they are not excited by seismic events (for example, the lander mode at 4 Hz in Fig. 1a). We also observe a pronounced ambient resonance at 2.4 Hz, strongest on the vertical component, with no clear link to wind strength but excited by all the seismic vibrations at that frequency. The relative excitations of the 2.4 Hz and 4 Hz modes serve as discriminants for the origin of ground vibrations recorded by SEIS, allowing us to distinguish between local vibrations induced by atmospheric or lander activity and more distant sources of ground vibrations. On Sol 185, two weak events can also be spotted in the quiet hours of the early evening, one with a broadband frequency content and a second 80 min later, centred on the 2.4 Hz resonance band (Fig. 1a).
Context. A large number of magnetic white dwarfs discovered in the SDSS have so far only been analyzed by visual comparison of the observations with relatively simple models of the radiation transport in a magnetised stellar atmosphere. Aims. We model the structure of the surface magnetic fields of the hydrogen-rich white dwarfs in the SDSS. Methods. We calculated a grid of state-of-the-art theoretical optical spectra of hydrogen-rich magnetic white dwarfs (WDs) with magnetic field strengths of between 1 MG and 1200 MG for different angles between the magnetic field vector and the line of sight, and for effective temperatures between 7000 K and 50 000 K. We used a least squares minimization scheme with an evolutionary algorithm to find the best-fit magnetic field geometry of the observed data. We used centered dipoles or dipoles that had been shifted along the dipole axis to model the coadded SDSS fiber spectrum of each object. Results. We analyzed the spectra of all known magnetic hydrogen-rich (DA) WDs from the SDSS (97 previously published, plus 44 newly discovered) and also investigated the statistical properties of the magnetic field geometries of this sample. Conclusions. The total number of known magnetic white dwarfs has already been more than tripled by the SDSS and more objects are expected after more systematic searches. The magnetic fields have strengths of between ≈1 and 900 MG. Our results further support the claims that Ap/Bp population is insufficient in generating the numbers and field strength distributions of the observed MWDs, and that of either another source of progenitor types or binary evolution is needed. Clear indications of non-centered dipoles exist in about ∼50%, of the objects which is consistent with the magnetic field distribution observed in Ap/Bp stars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.