ResumoO uso de extensos plantios clonais é uma prática consenso nas empresas florestais. No entanto, os modelos estatísticos e o tamanho das parcelas utilizadas na seleção dos clones superiores ainda é uma questão entre os melhoristas florestais. Com base em 11 experimentos contendo parcelas semelhantes aos plantios comerciais e 63 clones, este trabalho objetivou avaliar o uso de informação de pedigree, heterogeneidade genética entre ambientes e a possibilidade de redução de parcelas, a fim de otimizar a predição do incremento médio anual (IMA) realizando validação cruzada entre ambientes. Os ambientes proporcionaram altas herdabilidades no sentido-restrito (entre 0,65 a 0,95) e forte alteração dos rankings entre experimentos. A inclusão de parentesco e variâncias genéticas particulares para cada ambiente ao modelo é um procedimento eficiente na melhoria das acurácias realizadas. Além disso, 4 a 16 plantas avaliadas por parcela é uma quantidade confiável para predizer a produtividade dos talhões florestais. Palavras AbstractLarge clonal planting is a practice already established by the timber companies. However, statistical models, the plot size used in selection of superior clones is still a topic of discussion between forest breeders. Based on 11 trials containing plots similar to commercial plantations and 63 clones, this study aimed to evaluate the use of pedigree information, genetic heterogeneity between environments and the possibility of plot reduction in order to optimize the predictive accuracies of the mean annual increment (MAI) performing cross-validation between environments. All trials showed high narrow-sense heritabilities (from 0.65 to 0.95) and a strong change of clonal rankings was verified. It was observed that the inclusion of pedigree information and particular genetic variances for each trial on model is an effective procedure to increase the predictive accuracies. Moreover, between 4-16 trees evaluated per plot is a reliable size for the prediction of forest stands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.