Carbon is a well known austenite stabiliser and can be used to alter the stacking fault energy and stability against martensitic transformation in medium Mn steels, producing a range of deformation mechanisms such as the Transformation Induced Plasticity (TRIP) or combined Twinning and Transformation Induced Plasticity (TWIP + TRIP) effects. However, the effect of C beyond quasi-static tensile behaviour is less well known. Therefore, two medium Mn steels with 0.2 and 0.5 wt pct C were designed to produce similar austenite fractions and stability and therefore tensile behaviour. These were processed to form lamellar and mixed equiaxed + lamellar microstructures. The low C steel had a corrected Charpy impact energy (KV$$_{10}$$ 10 ) of 320 J cm$$^{-2}$$ - 2 compared to 66 J cm$$^{-2}$$ - 2 in the high C steel despite both having a ductility of over 35 pct. Interface segregation, e.g., of tramp elements, was investigated as a potential cause and none was found. Only a small amount of Mn rejection from partitioning was observed at the interface. The fracture surfaces were investigated and the TRIP effect was found to occur more readily in the Low C Charpy specimen. Therefore it is concluded that the use of C to promote TWIP + TRIP behaviour should be avoided in alloy design but the Charpy impact performance can be understood purely in terms of C in solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.