Atomic force microscopy (AFM), field-emission scanning electron microscopy, and energy dispersive X-Ray spectroscopy are used to study morphological and compositional variations of metal-organic interfaces in organic bistable devices. The results show that bias voltage causes rougher interfaces with new protrusions, and the switching phenomena origins from the evolution of these protrusions under external electric field. In order to exclude other possible factors, three types of bistable devices are designed and examined. In addition, metal-coated AFM probes are utilized to simulate the switching process, which yields similar results and corroborates our conclusion.
With the help of a nanoscale trench, the composition and conductance distributions of single GeSi quantum dots (QDs) are obtained by conductive atomic force microscopy combined with selective chemical etching. However, the obtained composition and current distributions are unwonted and inconsistent on the QDs grown at 680°C. With a series of confirmatory experiments, it is suggested that a thick oxide layer is formed and remains on the QDs' surface after etching. Though this selective chemical etching has already been widely applied to investigate the composition distribution of GeSi nanostructures, the oxidation problem has not been concerned yet. Our results indicate that the oxidation problem could not be ignored on highly GeSi mixed QDs. After removing the oxide layer, the composition and conductance distributions as well as their correlation are obtained. The results suggest that QDs' current distribution is mainly determined by the topographic shape, while the absolute current values are influenced by the Ge/Si contents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.