Let [Formula: see text] be a group given by a free presentation [Formula: see text]. The 2-nilpotent multiplier of [Formula: see text] is the abelian group [Formula: see text] which is invariant of [Formula: see text] [R. Baer, Representations of groups as quotient groups, I, II, and III, Trans. Amer. Math. Soc. 58 (1945) 295–419]. An effective approach to compute the 2-nilpotent multiplier of groups has been proposed by Burns and Ellis [On the nilpotent multipliers of a group, Math. Z. 226 (1997) 405–428], which is based on the nonabelian tensor product. We use this method to determine the explicit structure of [Formula: see text], when [Formula: see text] is a finite (generalized) extra special [Formula: see text]-group. Moreover, the descriptions of the triple tensor product [Formula: see text], and the triple exterior product [Formula: see text] are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.