Atypical antipsychotic treatment has been associated with serious metabolic adverse events, such as glucose dysregulation and development of type 2 diabetes. As part of our studies on possible underlying mechanisms, we investigated the acute effects of various typical and atypical antipsychotics on plasma glucose and insulin in FVB/N mice, a strain that showed a more pronounced hyperglycemic response to clozapine than C57BL/6 and CD-1 mice. Acute administration of high doses of clozapine, olanzapine, quetiapine, perphenazine, or chlorpromazine significantly increased plasma glucose by 100%-140% above basal levels without significant effects on insulin levels. In contrast, risperidone reduced plasma glucose (-30%) and markedly enhanced plasma insulin levels. Doses of ziprasidone that gave 50-fold higher free plasma concentrations than therapeutic plasma levels, as well as high doses of aripiprazole and haloperidol, did not significantly alter either glucose or insulin levels. Clozapine- and olanzapine-induced hyperglycemia occurred at free plasma concentrations that were within, or one order of magnitude above, the range of therapeutic plasma levels. Pretreatment with either the ganglionic blocker hexamethonium, or the alpha(2) adrenergic receptor antagonist yohimbine, blocked the clozapine- and chlorpromazine-induced increase in glucose levels. Taken together, these results suggest that typical and atypical antipsychotics with known metabolic liability produce acute hyperglycemia in mice and that this effect is likely driven by activation of the sympathetic autonomic nervous system via a central mechanism.
Somatodendritic and terminal release of serotonin (5-HT) was investigated by simultaneously measuring extracellular concentrations of 5-HT, 5-hydroxyindole-3-acetic acid (5-HIAA) and homovanillic acid (HVA) in the dorsal raphé and ventral hippocampus in freely moving rats. Perfusion of tetrodotoxin (TTX, 1 microM and 10 microM) into the dorsal raphé simultaneously decreased dorsal raphé and hippocampal 5-HT release. However, following TTX perfusion into the hippocampus (10 microM), hippocampal 5-HT release was profoundly reduced but dorsal raphé 5-HT remained unchanged. Systemic injections with 5-HT1A agonist, buspirone (1.0-5.0 mg/kg, i.p.) decreased 5-HT and 5-HIAA and increased HVA concentrations in the dorsal raphé and in the hippocampus. The decreases in the raphé and hippocampal 5-HT induced by systemic buspirone were antagonized in rats pretreated with 1.0 mM (-) pindolol, locally perfused into the dorsal raphé. Local dorsal raphé perfusion of (-) pindolol alone (0.01-1.0 mM) increased dorsal raphé 5-HT and concomitantly induced a small increase in hippocampal 5-HT. Buspirone perfusion into the dorsal raphé did not change (10 nM, 100 nM), or produced a small increase (1.0 mM) in raphé 5-HT, without changing hippocampal 5-HT. These data provide evidence that 5-HT release in the dorsal raphé is dependent on the opening of fast activated sodium channels and that dorsal raphé 5-HT1A receptors control somatodendritic and hippocampal 5-HT release
This study investigated the regulation of serotonin (5-HT) and its major metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the dorsal spinal cord of awake, freely moving rats, using microdialysis coupled to HPLC with electrochemical detection and tested the hypothesis that opioids exert their analgesic effect in part through the increased release of 5-HT in the dorsal horn. A dialysis tube was placed transversely at the L4 segment of the dorsal spinal cord and the basal concentration of 5-HT in the dialysate was characterized by infusion of a variety of substances through the dialysis probe: tetrodotoxin (TTX), KCl, imipramine, fluoxetine and amphetamine (AMPH). To evaluate the contribution of opioids, we also studied the effects of either systemic or intracerebroventricular (i.c.v.) injection of morphine or DAMGO. Extracellular concentrations of 5-HT and 5-HIAA were partially and reversibly reduced by TTX. In the presence of KCl, imipramine, fluoxetine or AMPH, 5-HT levels significantly increased. Under these conditions, extracellular 5-HIAA levels usually decreased. By contrast, the effects of opioids on 5-HT concentrations were highly variable. Low doses of morphine administered systemically increased 5-HT concentrations in only 3 of 6 rats. This was paralleled by a decrease in 5-HIAA. Higher doses of morphine, alone or in the presence of fluoxetine, did not change 5-HT concentrations. Intracerebroventricular injection of morphine or DAMGO increased the extracellular concentrations of 5-HT in only about one third of the animals. After intracerebroventricular opioid injection, extracellular concentrations of 5-HIAA either decreased by about 20% or did not change.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.