Significant advances have been reported in building and testing of high‐temperature polymer electrolyte membrane (HTPEM) fuel cells and stacks during recent years. Quantity distribution measurement techniques (e.g. current density, temperature and electrochemical impedance spectroscopy (EIS)) using segmented cells are commonly used to characterise low‐temperature PEM (LTPEM) fuel cells. Performing these measurements at higher temperatures is more difficult and a relatively new process. For this study, a fully operational segmented HTPEM fuel cell using a straight flow‐field configuration was designed, constructed and tested. The cathode side bipolar half‐plate consisted of 36 exchangeable segments, whereas, the anode side bipolar half‐plate was not segmented. The cell was operated at various operating temperatures with various anode gas compositions and air (no backpressure). In addition to the experimental results, a simple computational fluid dynamics model based on COMSOL Multiphysics® 3.5a was used to support the observed behaviour during segmented measurements. The computational domain consisted of the cathode side gas channels and the porous media. All of the boundary conditions and gas properties were defined in a manner similar to the experimental investigations. Some of the theoretical results were compared to the experimental results and conclusions were drawn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.