As train speed increases, contact wire irregularity affects the quality of current collection more and more. The possibility of achieving the maximum operating speed depends also on the maintenance level of the overhead line (OHL). In the present paper, the influence of contact wire irregularity (in terms of vertical deviation of its position) is investigated both experimentally and by means of numerical simulation of the dynamic interaction of pantograph and catenary. In a first step, the capability of the simulation to reproduce the effect of a singularity in the contact wire height along the line has been tested by comparison with available experimental results. The same model has been subsequently used to perform numerical experiments concerning the effects of several types of distributed defects on the catenary. Afterwards, considering the data generated with the simulation as experimental data, a procedure to find the signature in terms of the contact force of the considered distributed defects on the OHL has been proposed. In this procedure, the contact force is not measured, but estimated from the motion of the pantograph, by means of an application of the extended Kalman filter. The adoption of an estimation procedure for the contact force, instead of a direct measurement, would allow the installation of a measurement system that is much simpler than the one required for the direct measurement of contact force. For this feature, it could be installed, at least in principle, on ordinary trains, allowing to perform an extensive monitoring and diagnostic activity with a large database.
Sophisticated computational aero-hydro-elastic tools are being developed for simulating the dynamics of Floating Offshore Wind Turbines (FOWTs). The reliabilty of such prediction tools for designers requires experimental validation. To this end, due to the lack of a large amount of full scale data available, scale tests represent a remarkable tool. Moreover, due to the combined aerodynamic and hydrodynamic contributions to the dynamics of FOWTs, experimental tests should take into account both. This paper presents the design process of a 6-Degrees-of-Freedom robot for simulating the dynamics of FOWTs in wind tunnel scale experiments, as a complementary approach with respect to ocean wind-wave basin scale tests. Extreme events were considered for the definition of the robot requirements and performance. A general overview on the possible design solutions is reported, then the machine architecture as well as the kinematic and dynamic analysis is discussed. Also a motion task related to a 5-MW Floating Offshore Wind Turbine nominal operating condition was considered and then the ability of the robot to reproduce such motions verified in terms of maximum displacements, forces and power, to be within the design boundaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.