It is indisputable that clinicians cannot exactly state the outcome of pregnancies through conventional knowledge and methods even as the surge in human knowledge continues. Hence, several computational techniques have been adapted for precise pregnancy outcome (PO) prediction. Obstetric datasets for PO determination exist as single label learning (SLL), multi-label learning (MLL) and multi-target (MTP) problems. There is however no single classifier recommended to optimally satisfy the needs of all the classification types. This work therefore identifies six widely used PO classifiers and investigates their performances in all three classification categories; to find the best performing classifier. Obstetric dataset exposed to input rank analysis via Principal component Analysis, produced thirteen (13) significant features for the experiment. Accuracy, F1-measure and build/test time were used as evaluation metrics. Decision tree (DT) had an average accuracy and F1 score of 89.23% and 88.23% respectively, with 1.0 average rank. Under MLL configuration, average accuracy (91.71%) and F1 score (94.28%) were highest in the random forest (RF) which had a 1.0 average test time rank. Using MTP, DT had an average accuracy of 88.80% and average F1 score of 71.13%, the multi-layered perceptron (MLP) had the best time cost with an average rank value of 2.0. From the results, RF is most optimal in terms of accuracy and average rank value, while DT is the most efficient in terms of time cost. The comparative analysis of global averages of the six base classifiers shows that RF is the most optimal algorithm with an average accuracy of 87.3% given all three data setups in the study. MLP on the other hand had an unexpectedly high time cost, making it unsuitable for similar data classifications if time is the main criterion. It is recommended that the choice of the classifier should either be RF or DT depending on the application domain and whether or not time cost is a major consideration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.