An online seizure detection algorithm for long-term EEG monitoring is presented, which is based on a periodic waveform analysis detecting rhythmic EEG patterns and an adaptation module automatically adjusting the algorithm to patient-specific EEG properties. The algorithm was evaluated using 4.300 hours of unselected EEG recordings from 48 patients with temporal lobe epilepsy. For 66% of the patients the algorithm detected 100% of the seizures. A mean sensitivity of 83% was achieved. An average of 7.2 false alarms within 24 hours for unselected EEG makes the algorithm attractive for epilepsy monitoring units.
In this paper we show a proof of concept for novel automatic seizure onset zone detector. The proposed approach utilizes the Austrian Institute of Technology (AIT) seizure detection system EpiScan extended by a frequency domain source localization module. EpiScan was proven to detect rhythmic epileptoform seizure activity often seen during the early phase of epileptic seizures with reasonable high sensitivity and specificity. Additionally, the core module of EpiScan provides complex coefficients and fundamental frequencies representing the rhythmic activity of the ictal EEG signal. These parameters serve as input to a frequency domain version of the Minimum Variance Beamformer to estimate the most dominant source. The position of this source is the detected seizure onset zone. The results are compared to a state of the art wavelet transformation approach based on a manually chosen frequency band. Our first results are encouraging since they coincide with those obtained with the wavelet approach and furthermore show excellent accordance with the medical report for the majority of analyzed seizures. In contrast to the wavelet approach our method has the advantage that it does not rely on a manual selection of the frequency band.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.