Porosity is a characteristic present in most sintered materials, full densification only being achieved in special cases. For some sintered materials, porosity is indeed a desired characteristic, serving for the intended application of the material. In any case, the porosity present in materials can have a strong effect on some of their properties, both structural and functional. In this paper, some of the expressions proposed to describe the influence of the total porosity on the effective properties of sintered materials are examined. Moreover, a universal expression (with two fitting parameters) valid to satisfactorily represent all the analysed behaviours is proposed. One of these parameters can be assimilated to the tap porosity of the powders used to manufacture the material. The properties examined were elastic moduli, ultimate strength, thermal and electrical conductivities, magnetic characteristics, and other properties directly related to these ones. The study is valid for sintered materials, both metallic and ceramic, with a homogeneous and non-texturised microstructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.