Cancer stem-like cells (CSC) could be a novel target for cancer therapy, including dendritic cell (DC) immunotherapy. To address this, we developed experiments aimed at DC targeting of neurospheres (NS) from GL261 glioma cells because neurospheres can be enriched in CSC. We obtained murine neurospheres by growing GL261 cells in epidermal growth factor/basic fibroblast growth factor without serum. GL261-NS recapitulated important features of glioblastoma CSC and expressed higher levels of radial glia stem cell markers than GL261 cells growing under standard conditions (GL261 adherent cells, GL261-AC), as assessed by DNA microarray and real-time PCR. GL261-NS brain gliomas were highly infiltrating and more rapidly lethal than GL261-AC, as evidenced by survival analysis (P < 0.0001), magnetic resonance imaging and histology. DC from the bone marrow of syngeneic mice were then used for immunotherapy of GL261-NS and GL261-AC tumors. Strikingly, DC loaded with GL261-NS (DC-NS) cured 80% and 60% of GL261-AC and GL261-NS tumors, respectively (P < 0.0001), whereas DC-AC cured only 50% of GL261-AC tumors (P = 0.0022) and none of the GL261-NS tumors. GL261-NS expressed higher levels of MHC and costimulatory molecules (CD80 and CD86) than GL261-AC; the JAM assay indicated that DC-NS splenocytes had higher lytic activity than DC-AC splenocytes on both GL261-NS and GL261-AC, and immunohistochemistry showed that DC-NS vaccination was associated with robust tumor infiltration by CD8+ and CD4+ T lymphocytes. These findings suggest that DC targeting of CSC provides a higher level of protection against GL261 gliomas, a finding with potential implications for the design of clinical trials based on DC vaccination.
BACKGROUND AND PURPOSE:The connectivity across brain regions can be evaluated through fMRI either by using ICA or by means of correlation analysis of time courses measured in predefined ROIs. The purpose of this study was to investigate quantitatively the correspondence between the connectivity information provided by the 2 techniques.
In patients with temporal lobe epilepsy (TLE), assessment of language lateralization is important as anterior temporal lobectomy may lead to language impairments. Despite the widespread use of fMRI, evidence of its usefulness in predicting postsurgical language performance is scant.We investigated whether preoperative functional lateralization is related to the preoperative language performance, peri-ictal aphasia, and can predict language outcome one year post-surgery.We studied a total of 72 TLE patients (42 left, 30 right), by using three fMRI tasks: Naming, Verb Generation and Fluency. Functional lateralization indices were analyzed with neuropsychological scores and presence of peri-ictal aphasia.The key findings are:Both left and right TLE patients show decreased left lateralization compared to controls.Lateralization correlates with language performance before surgery. In left TLE, decreased left lateralization correlates with better fluency performance. In right TLE, increased left lateralization during the Naming task correlates with better naming.Left lateralization correlates with peri-ictal aphasia in left TLE patients.Lateralization correlates with language performance after surgery. In a subgroup of left TLE who underwent surgery (17 left), decreased left lateralization is predictive of better naming performance at 6 and 12 months after surgery.The present study highlights the clinical relevance of fMRI language lateralization in TLE, especially to predict language outcome one year post-surgery. We also underline the importance of using fMRI tasks eliciting frontal and anterior temporal activations, when studying left and right TLE patients.
Our study showed that MOH patients present dysfunctions in the mesocorticolimbic dopamine circuit, in particular in the ventromedial prefrontal cortex and in the substantia nigra/ventral tegmental area complex. The ventromedial prefrontal cortex dysfunctions seem to be reversible and attributable to the acute/chronic headache, whereas the substantia nigra/ventral tegmental area complex dysfunctions are persistent and possibly related to medication overuse. These dysfunctions might be the expression of long-lasting neuroadaptations related to the overuse of medications and/or a pre-existing neurophysiological condition leading to vulnerability to medication overuse. The observed persistent dysfunctions in the midbrain dopamine suggest that MOH may share some neurophysiological features with addiction.
The quadrupole strength function of 28 O is calculated making use of the SIII interaction, within the framework of continuum-RPA and taking into account collisions among the nucleons (doorway coupling). The centroid of the giant resonance is predicted at ≈ 14 MeV, that is much below the energy expected for both isoscalar and isovector quadrupole resonances in nuclei along the stability valley. About half of this width arises from the coupling of the resonance to the continuum and about half is due to doorway coupling. This result is similar to that obtained in the study of giant resonances in light, β-stable nuclei, and shows the lack of basis for the expectation, entertained until now in the literature, that continuum decay was the main damping mechanism of giant resonances in halo nuclei [1].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.