This article presents a multidisciplinary approach to landslide susceptibility mapping by means of logistic regression, artificial neural network, and geographic information system (GIS) techniques. The methodology applied in ranking slope instability developed through statistical models (conditional analysis and logistic regression), and neural network application, in order to better understand the relationship between the geological/geomorphological landforms and processes and landslide occurrence, and to increase the performance of landslide susceptibility models. The proposed experimental study concerns with a wide research project, promoted by the Tuscany Region Administration and APAT-Italian Geological Survey, aimed at defining the landslide hazard in the area of the Sheet 250 ‘‘Castelnuovo di Garfagnana’’ (1:50,000 scale). The study area is located in the middle part of the Serchio River basin and is characterized by high landslide susceptibility due to its geological, geomorphological, and climatic features, among the most severe in Italy. Terrain susceptibility to slope failure has been approached by means of indirect-quantitative statistical methods and neural network software application. Experimental results from different methods and the potentials and pitfalls of this methodological approach have been presented and discussed. Applying multivariate statistical analyses made it possible a better understanding of the phenomena and quantification of the relationship between the instability factors and landslide occurrence. In particular, the application of a multilayer neural network, equipped for supervised learning and error control, has improved the performance of the model. Finally, a first attempt to evaluate the classification efficiency of the multivariate models has been performed by means of the receiver operating characteristic (ROC) curves analysis approach
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.