Degenerated oligonucleotide primers designed to flank an approximately 1.2-kb fragment of the gene encoding glyceraldehyde-3-phosphate dehydrogenase (gpd) from ascomycetes and basidiomycetes were used to amplify the corresponding gpd fragments from several species of the ectomycorrhizal fungal taxa Boletus, Amanita, and Lactarius. Those from B. edulis, A. muscaria, and L. deterrimus were cloned and sequenced. The respective nucleotide sequences of these gene fragments showed a moderate degree of similarity (72 to 76%) in the protein-encoding regions and only a low degree of similarity in the introns (56 to 66%). Introns, where present, occurred at conserved positions, but the respective positions and numbers of introns in a given taxon varied. The amplified fragment from a given taxon could be distinguished from that of others by both restriction nuclease cleavage analysis and Southern hybridization. A procedure for labeling DNA probes with fluorescein-12-dUTP by PCR was developed. These probes were used in a nonradioactive hybridization assay, with which the gene could be detected in 2 ng of chromosomal DNA of L. deterrimus on slot blots. Taxon-specific amplification was achieved by the design of specific oligonucleotide primers. The application of the gpd gene for the identification of mycorrhizal fungi under field conditions was demonstrated, with Picea abies (spruce) mycorrhizal roots harvested from a northern alpine forest area as well as from a plant-breeding nursery. The interference by inhibitory substances, which sometimes occurred in the DNA extracted from the root-fungus mixture, could be overcome by using very diluted concentrations of template DNA for a first round of PCR amplification followed by a second round with nested oligonucleotide primers. We conclude that gpd can be used to detect ectomycorrhizal fungi during symbiotic interaction.
Growth, mycorrhiza and frost resistance of Picea abies seedlings following fertilization with different levels of nitrogen. NPK fertilization with varying levels of nitrogen causes increased growth of spruce seedlings and faster flushing in spring. During the growing season, the frost resistance of all organs of the plants, especially new needles and shoots is the lower, the more nitrogen the plants have received. Consequently, spruce plantations, especially at high altitudes, may be liable to late frost damage.
Einleitung
The ectomycorrhizal basidiomycete species Lactarius deterrimus Gröger is considered to be a strictly host-specific mycobiont of Picea abies (L.) Karst. However, we identified arbutoid mycorrhiza formed by this fungus on the roots of Arctostaphylos uva-ursi (L.) Spreng. in a mixed stand at the alpine timberline; typical ectomycorrhiza of P. abies were found in close relation. A. uva-ursi is known as an extremely unspecific phytobiont. The mycorrhizae of both associations are described and compared morphologically. The mycorrhiza formed by L. deterrimus on both A. uva-ursi and P. abies show typical ectomycorrhizal features such as a hyphal mantle and a Hartig net. The main difference between the mycorrhizal symbioses with the different phytobionts is the occurrence of intracellular hyphae in the epidermal cells of A. uva-ursi. This emphasizes the importance of the plant partner for mycorrhizal anatomy. This is the first report of a previously considered host-specific ectomycorrhizal fungus in association with A. uva-ursi under natural conditions. The advantages of this loose specificity between the fungus and plant species is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.