Synthesis of the c-myc gene product was measured during the entire cell cycle of subconfluent mouse 3T3 cells with an antibody raised against a human c-myc synthetic peptide. The antiserum recognized two mouse c-myc-encoded proteins with apparent molecular weights in sodium dodecyl sulfate-polyacrylamide gels of 62,000 and 60,000. Cell-derived p62 was compared with the mouse c-myc gene product synthesized in vitro. Immunoprecipitation, electrophoretic analyses, and peptide mapping provided evidence that p62 is encoded by the mouse c-myc gene. The rate of synthesis of the c-myc proteins was tightly coupled to the cellular growth state of nontransformed A31 3T3 cells, but not to that of their benzo(a)pyrene-transformed derivative (BPA31). Furthermore, the synthesis of the c-myc proteins was stimulated by the exposure of confluent, density-arrested A31 cells to platelet-derived growth factor or fibroblast growth factor. Tightly synchronized cell populations were obtained on the addition of serum factors to subconfluent, serum-deprived A31 cells, and c-myc expression could be monitored for more than one complete cell cycle. One hour after stimulation the steady-state level of the 2.2 kilobase c-myc transcript increased 30-fold relative to that of quiescent cells and decreased thereafter to the level observed during exponential growth. The rate of synthesis of c-myc-encoded proteins was determined by immunoprecipitation after a 2-h labeling period. After an initial sevenfold increase detectable 2 h after serum addition, the rate of synthesis remained constant throughout the rest of the cell cycle. No further changes associated with the late prereplicative period, S phase, G2, or mitosis could be demonstrated. Pulse-chase and long-term labeling experiments revealed different half-lives for the two c-myc-encoded proteins. The half-lives of the c-myc proteins, however, were independent of the cellular growth state. The sustained expression observed throughout the cell cycle suggests that the growth-related function of c-myc may be required during the GO-GI transition and in all phases of the cycle of the growing cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.