Knowledge of the electric field that is induced in the brain or the limbs is of importance in magnetic stimulation of the nervous system. Here, an analytical model based on the reciprocity theorem is used to compare the induced electric field in unbounded, semi-infinite, spherical, and cylinder-like volume conductors. Typical stimulation coil arrangements are considered, including the double coil and various orientations of the single coil. The results can be used to determine when the influence of the boundaries is negligible enough to allow the use of more simplified geometries.
Time-frequency distribution methods are being widely used for the analysis of a variety of biomedical signals. Recently, they have been applied also to study otoacoustic emissions (OAE's), the active acoustic response of the hearing end organ. Click-evoked otoacoustic emissions (CEOAE's) are time-varying signals with a clear frequency dispersion along with the time axis. Analysis of CEOAE's is of considerable interest due to their close relation with cochlear mechanisms. In this paper, several basic time-frequency distribution methods are considered and compared on the basis of both simulated signals and real CEOAE's. The particular structure of CEOAE's requires a method with both a satisfactory time and frequency resolution. Results from simulations and real CEOAE's revealed that the wavelet approach is highly suitable for the analysis of such signals. Some examples of the application of the wavelet transform to CEOAE's are provided here. Applications range from the extraction of normative data from adult and neonatal OAE's to the extraction of quantitative parameters for clinical purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.