Twenty virgin olive oils of extra quality and different bitter intensity were submitted to sensory evaluation and to the determination of polyphenols. A linear regression analysis was carried out assuming, as an independent variable, bitter intensity perceived by tasters, as an independent variable, the concentration (mmol/kg) of dialdehydic and aldehydic forms oleuropein aglycon, and dialdehydic and aldehydic forms ligstroside aglycon. Structural confirmation of these compounds was done by online high-performance liquid chromatography-electrospray ionization-collison-induced dissociation-mass spectrometry. The results obtained demonstrate the essential role played by this compound in the bitter taste of virgin olive oil.
The biosynthetic pathway of oleuropein (from 7-ketologanin, oleoside-11-methyl ester, 7-β-1-d-glucopyranosyl-11-methyl oleoside, and ligstroside to oleuropein) was investigated in two fruit species of Oleaceae, namely, Arbequina and Hojiblanca. Main oleuropein precursors and their metabolites, produced by the enzymatic hydrolysis mediated by β-glucosidase, were identified and quantified to establish the oleuropein transformation pathway. Changes in the concentration of these compounds were measured by direct control of in vivo fruit tissue during their ripening. High contents of aglycones at the initial stage of the process were caused by the high activity of β-glucosidase, which supports that oleuropein biosynthesis is coupled with enzymatic hydrolysis, producing its aglycone form. The low oleuropein content at this initial stage was caused by the imbalance between catabolic and anabolic pathways, favoring the former ones. Once the main polyphenol synthesis phase was completed, the biosynthetic capacity diminished and the content of all compounds decreased. Mass balance revealed that precursors of oleuropein, which are rapidly transformed by β-glucosidase and esterases, scarcely contributed to the accumulation of oleuropein. The biosynthetic pathway proposed by Damtoft applies for both varieties, but our study reveals that the β-glucosidase enzyme is involved in oleuropein synthesis. This enzyme shows high substrate specificity to oleuropein, which consequently is degraded to its aglycone form, with diminished efficacy of oleuropein biosynthesis. Different enzymatic activities of varieties will result in oleuropein accumulation and metabolic transformation of phenols.
Virgin olive oil was used as substrate to study the influence of chlorophylls on its oxidative stability in light and in darkness. Chlorophylls a and b were added to this sul~ strate, after which oils were stored at 36 _ 2°C for three months under artificial light (1340 lux) or in darkness. The effect of light was greater than that of the additives. The prooxidant action of chlorophylls in the presence of other pigments of the oil was not observed in this assay. ing early storage, the rate of peroxide formation was lower in the samples with added chlorophylls, but later it equalled that of the control. In darkness, stability was greater in the samples containing chlorophylls, indicating a slight antioxidant effect, which was more marked for chlorophyll a.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.