the quota system that restricted textile and apparel imports into the United States and other nations ended for all member countries of the World Trade Organization (WTO). Not surprisingly, there has been widespread speculation about the long-term impact of this monumental liberalization of international trade. A brief survey of both the relevant academic literature and the popular press reveals a prevailing notion among scholars, industry groups, government agents, and industry analysts: exports from low-wage countries in general, and China in particular, will grow rapidly, virtually wiping out the textile and apparel sectors of the United States and many other established suppliers (
Experimental studies of drag reduction and polymer degradation in turbulent pipe flow with dilute water solutions of unfractionated polyethylene oxide are described. Drag reduction results indicate that the magnitude of the reduction cannot be correlated on the basis of weight average molecular weight, rather the phenomenon depends strongly on the concentration of the highest molecular weight species present in the molecular weight distribution. Polymer degradation in turbulent flow is found to be severe for high molecular weight polymers causing appreciable changes in drag reduction and molecular weight with the duration of flow. Data indicates that drag reduction exists in the limit of infinite dilution suggesting that the phenomenon is due to the interaction of individual polymer molecules with the surrounding solvent and that the extent of reduction is relatively independent of pipe diameter when a comparison is carried out at equal solvent wall shear stresses. Consideration of the high viscosity obtained with solutions in an irrotational laminar flow field suggests this is due to polymer molecule deformation and that this phenomenon is central to the mechanism of turbulent flow drag reduction.
The paper describes correlation measurements in both broad and narrow frequency bands of the longitudinal velocity fluctuations in fully developed pipe flow at four positions for a reference probe whilst a second probe was traversed radially from deep in the sublayer to a position near the axis with both longitudinal and transverse separations zero (Δx = Δz = 0). Such measurements require that both the Covariant (Co) and Quadrature (Quad) correlations be determined for each of the 15 frequencies used to constrain the wave component λx.The new data demonstrate that low frequency, large scale turbulence fluctuations extend over the majority of the radial region and that these components are highly correlated. By using a similarity variable kxy, along with a normalized wall distance y/y REF, both correlation functions, i.e. the Co and the Quad components, are shown to collapse. The physical significance of this is discussed.The broad-band data do not collapse because of the large range of wave sizes. However, the present experiment does show that strong radial correlations exist even when one probe is at y+ = 1. This conflicts with the earlier data of Favre, but agrees with the more recent work of Comte-Bellot. There is a significant amount of turbulent energy in frequencies less than 16 Hz (ω+ = 0·008) for turbulent flows of about 105 Reynolds number.The spectral function ωΦ(ω) is also presented for a range of y+ values. Using this form for the power spectral density, along with the stochastic wave modelling and similarity arguments of this paper, it is shown how a consistent explanation for the behaviour of these spectra is obtained. In addition some preliminary results from cross-spectral analyses are presented and suggestions made as to their physical significance.
The formation of vortex streets in the wake of two-dimensional bluff bodies can be explained by considering the non-linear interaction of two infinite vortex sheets, initially a fixed distance, h, apart, in an inviscid incompressible fluid. The interaction of such sheets (represented in the calculation by rows of point-vortices) is examined in detail for various ratios of h to the wavelength, a, of the initial disturbance. The number and strength of the concentrated regions of vorticity formed in the interaction depend very strongly on h/a. The non-linear interaction of the two vortex sheets explains both the cancellation of vorticity and vortex-street broadening observed in the wakes of bluff bodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.