Direct numerical simulations of the variable density and viscosity Navier–Stokes equations are employed, in order to explore three-dimensional effects within miscible displacements in horizontal Hele-Shaw cells. These simulations identify a number of mechanisms concerning the interaction of viscous fingering with a spanwise Rayleigh–Taylor instability. The dominant wavelength of the Rayleigh–Taylor instability along the upper, gravitationally unstable side of the interface generally is shorter than that of the fingering instability. This results in the formation of plumes of the more viscous resident fluid not only in between neighbouring viscous fingers, but also along the centre of fingers, thereby destroying their shoulders and splitting them longitudinally. The streamwise vorticity dipoles forming as a result of the spanwise Rayleigh–Taylor instability place viscous resident fluid in between regions of less viscous, injected fluid, thereby resulting in the formation of gapwise vorticity via the traditional, gap-averaged viscous fingering mechanism. This leads to a strong spatial correlation of both vorticity components. For stronger density contrasts, the streamwise vorticity component increases, while the gapwise component is reduced, thus indicating a transition from viscously dominated to gravitationally dominated displacements. Gap-averaged, time-dependent concentration profiles show that variable density displacement fronts propagate more slowly than their constant density counterparts. This indicates that the gravitational mixing results in a more complete expulsion of the resident fluid from the Hele-Shaw cell. This observation may be of interest in the context of enhanced oil recovery or carbon sequestration applications.
Gravitationally and viscously unstable miscible displacements in vertical Hele-Shaw cells are investigated via three-dimensional Navier-Stokes simulations. The velocity of the two-dimensional base-flow displacement fronts generally increases with the unfavourable viscosity contrast and the destabilizing density difference. Displacement fronts moving faster than the maximum velocity of the Poiseuille flow far downstream exhibit a single stagnation point in a moving reference frame, consistent with earlier observations for corresponding capillary tube flows. Gravitationally stable fronts, on the other hand, can move more slowly than the Poiseuille flow, resulting in more complex streamline patterns and the formation of a spike at the tip of the front, in line with earlier findings. A two-dimensional pinch-off governed by dispersion is observed some distance behind the displacement front. Three-dimensional simulations of viscously and gravitationally unstable vertical displacements show a strong vorticity quadrupole along the length of the finger, similar to recent observations for neutrally buoyant flows. This quadrupole results in an inner splitting instability of vertically propagating fingers. Even though the quadrupole's strength increases for larger destabilizing density differences, the inner splitting is delayed due to the presence of a secondary, outer quadrupole which counteracts the inner one. For large unstable density differences, the formation of a secondary, downward-propagating front is observed, which is also characterized by inner and outer vorticity quadrupoles. This front develops an anchor-like shape as a result of the flow induced by these quadrupoles. Increased spanwise wavelengths of the initial perturbation are seen to result in the formation of the well-known tip-splitting instability. For suitable initial conditions, the inner and tip-splitting instabilities can be seen to develop side by side, affecting different regions of the flow field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.