Recent cloning of a cDNA (UNG15) encoding human uracil-DNA glycosylase (UDG), indicated that the gene product of M(r) = 33,800 contains an N-terminal sequence of 77 amino acids not present in the presumed mature form of M(r) = 25,800. This led to the hypothesis that the N-terminal sequence might be involved in intracellular targeting. To examine this hypothesis, we analysed UDG from nuclei, mitochondria and cytosol by western blotting and high resolution gel filtration. An antibody that recognises a sequence in the mature form of the UNG protein detected all three forms, indicating that they are products of the same gene. The nuclear and mitochondrial form had an apparent M(r) = 27,500 and the cytosolic form an apparent M(r) = 38,000 by western blotting. Gel filtration gave essentially similar estimates. An antibody with specificity towards the presequence recognised the cytosolic form of M(r) = 38,000 only, indicating that the difference in size is due to the presequence. Immunofluorescence studies of HeLa cells clearly demonstrated that the major part of the UDG activity was localised in the nuclei. Transfection experiments with plasmids carrying full-length UNG15 cDNA or a truncated form of UNG15 encoding the presumed mature UNG protein demonstrated that the UNG presequence mediated sorting to the mitochondria, whereas UNG lacking the presequence was translocated to the nuclei. We conclude that the same gene encodes nuclear and mitochondrial uracil-DNA glycosylase and that the signals for mitochondrial translocation resides in the presequence, whereas signals for nuclear import are within the mature protein.
At the posterior pole of the Drosophila oocyte, oskar induces a tightly localized assembly of pole plasm. This spatial restriction of oskar activity has been thought to be achieved by the localization of oskar mRNA, since mislocalization of the RNA to the anterior induces anterior pole plasm. However, ectopic pole plasm does not form in mutant ovaries where oskar mRNA is not localized, suggesting that the unlocalized mRNA is inactive. As a first step towards understanding how oskar activity is restricted to the posterior pole, we analyzed oskar translation in wild type and mutants. We show that the targeting of oskar activity to the posterior pole involves two steps of spatial restriction, cytoskeleton-dependent localization of the mRNA and localization-dependent translation. Furthermore, our experiments demonstrate that two isoforms of Oskar protein are produced by alternative start codon usage. The short isoform, which is translated from the second in-frame AUG of the mRNA, has full oskar activity. Finally, we show that when oskar RNA is localized, accumulation of Oskar protein requires the functions of vasa and tudor, as well as oskar itself, suggesting a positive feedback mechanism in the induction of pole plasm by oskar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.