A novel device arrangement for all-optical switching that permits efficient exploitation of waveguide nonlinearities is discussed. It is based on a long optical fiber loop mirror with an integral short asymmetrically located optical amplifier. The device performance is demonstrated by using a Nd(3+)-doped fiber amplifier. Switching is obtained for peak signal powers of less than 1 W and an amplifier pump power of 10 mW.
Cross-phase and self-phase modulation are used for self-sustained mode locking of a high-power neodymium glass fiber laser. Stable pulses with a FWHM as short as 70 fs and pulse energies of as much as 1 nJ are generated at a wavelength of 1.064 microm.
The generation of bandwidth-limited shoulder-free 125-fsec pulses by additive-pulse-compression mode locking of a neodymium glass laser is described. An all-fiber nonlinear amplifying loop mirror is employed as a fast saturable absorber and permits stable pulse generation under the condition of large pulse shaping in the cavity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.