Single-atom impurities and other atomic-scale defects can notably alter the local vibrational responses of solids and, ultimately, their macroscopic properties. Using high-resolution electron energy-loss spectroscopy in the electron microscope, we show that a single substitutional silicon impurity in graphene induces a characteristic, localized modification of the vibrational response. Extensive ab initio calculations reveal that the measured spectroscopic signature arises from defect-induced pseudo-localized phonon modes—that is, resonant states resulting from the hybridization of the defect modes and the bulk continuum—with energies that can be directly matched to the experiments. This finding realizes the promise of vibrational spectroscopy in the electron microscope with single-atom sensitivity and has broad implications across the fields of physics, chemistry, and materials science.
Structural and chemical bonding changes in nuclear graphite have been investigated during in-situ electron irradiation in a transmission electron microscope (TEM); electron beam irradiation has been employed as a surrogate for neutron irradiation of nuclear grade graphite in nuclear reactors. This paper aims to set out a methodology for analysing the microstructure of electron-irradiated graphite which can then be extended to the analysis of neutron-irradiated graphites. The damage produced by exposure to 200 keV electrons was examined up to a total dose of approximately 0.5 dpa (equivalent to an electron fluence of 5.6x 10 21 electrons cm -2 ). During electron exposure, high resolution TEM images and electron energy loss spectra (EELS) were acquired periodically in order to record changes in structural (dis)order and chemical bonding, by quantitatively analysing the variation in phase contrast images and EEL spectra.
We have measured the binding energy of the image-potential states on Cu(100) and Ag(100) surfaces with two-photon photoemission spectroscopy. We find E& --0.57 (0.18)+0.02 eV for Cu (100) and 0.53 (0.16)+0.02 eV for Ag(100) for the n =1 (n=2) states, respectively. These values are compared with the nearly hydrogenic binding energies of 0.77 -0.83 eV obtained for the (111)surfaces of Cu, Ag, and Ni using the same method. The comparison shows that the binding energy does not depend on the material as long as the surface structure remains constant but changes markedly with the crystal orientation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.