An expression of the particle-number projected nuclear moment of inertia (MOI) has been established in the neutron–proton (np) isovector pairing case within the cranking model. It generalizes the one obtained in the like-particles pairing case. The formalism has been, as a first step, applied to the picket-fence model. As a second step, it has been applied to deformed even–even nuclei such as [Formula: see text] and of which the experimentally deduced values of the pairing gap parameters [Formula: see text], [Formula: see text], are known. The single-particle energies and eigenstates used are those of a deformed Woods–Saxon mean-field. It was shown, in both models, that the np pairing effect and the projection one are non-negligible. In realistic cases, it also appears that the np pairing effect strongly depends on [Formula: see text], whereas the projection effect is practically independent from the same quantity.
26 Al was the first cosmic radioactivity ever detected in the galaxy. Its nucleosynthesis in novae outbursts is still uncertain mainly due to the lack of nuclear information concerning the 25 Al(p,γ) 26 Si reaction. We report here on a neutron-gamma coincidence measurement of the 24 Mg( 3 He,nγ) 26 Si reaction performed at the Orsay TANDEM facility aiming at the spectroscopic study of astrophysically important 26 Si states. A new level in the Gamow peak is observed at E X = 5.888 MeV and the gamma-ray decay scheme of all levels below the proton threshold is confirmed.11th Symposium on Nuclei in the Cosmos, NIC XI
Abstract. The production of residual nuclei in p + Fe collisions has been measured at GSI on the FRS facility by means of the reverse kinematic techniques at 300, 500, 750, 1000 and 1500 MeV/A. The cross-sections larger than 0.01 mb of all isotopes with Z larger than 8 have been obtained. Velocity distributions were also measured. Comparisons to models describing spallation reactions and some empirical formulae often used in astrophysics are presented. These data are directly used to calculate impurety production and DPAs in a thin window as foreseen in spallation sources or accelerator-driven systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.