Monocyte/macrophage differentiation was studied in biopsy samples of multiple sclerosis (MS) lesions obtained in the early course of the disease. Macrophages were identified by immunocytochemistry using a panel of antibodies recognizing different macrophage-activation antigens. The number of cells stained with each antibody was related to the demyelinating activity of the lesions as detected by the presence of myelin degradation products. The pan-macrophage marker Ki-M1P revealed the highest numbers of macrophages in early and late active lesions. Lower numbers were encountered in inactive, demyelinated, or remyelinated lesions. The acute stage inflammatory macrophage markers MRP14 and 27E10 were expressed in either only early active (MRP14) or early and late active (27E10) lesions, thus allowing the identification of actively demyelinating lesions. The chronic stage inflammatory macrophage marker 25F9, in contrast, showed increasing expression with decreasing lesional activity. These findings indicate a differentiated pattern of macrophage activation in MS lesions and allow the staging of demyelinating lesions in routinely fixed and paraffin-embedded tissue.
Regional changes of metabolite concentrations during human brain development were assessed by quantitative localized proton magnetic resonance spectroscopy in vivo. Apart from measurements in young healthy adults, the study was based on regional spectra from 97 children who were either healthy or suffered from mental retardation, movement disorders, epilepsies, neoplasm, or vascular malformation. Metabolite quantitation focused on cortical gray and white matter, cerebellum, thalamus, and basal ganglia in six age groups from infancy to adulthood. During infancy and childhood, the concentration of the neuroaxonally located N-acetylasparate increased in gray matter, cerebellum, and thalamus, whereas a constant level was detected in white matter. These findings are in line with regional differences in the formation of synaptic connections during early development and suggest a role of N-acetylaspartate as a marker of functioning neuroaxonal tissue rather than of the mere presence of nerve cells. This view is further supported by high concentrations of taurine in gray matter and cerebellum during infancy, because taurine is also believed to be involved in the process of synapse formation. Remarkably, in basal ganglia both N-acetylaspartate and taurine remain constant at relatively high concentrations. Other metabolite changes during maturation include increases of N-acetylaspartylglutamate, especially in thalamus and white matter, and a decrease of glutamine in white matter. Despite regional differences and some small changes during the first year of life, the concentrations of creatine, phosphocreatine, choline-containing compounds, myoinositol, and glutamate remain constant afterward. The creatine to phosphocreatine concentration ratio yields 2:1 throughout the human brain irrespective of region or age. The observed increase of the proton resonance line-width with age is most pronounced in basal ganglia and corresponds to the age-related and tissue-dependent increase of brain iron.
In a patient with extrapyramidal movement disorder and extremely low creatinine concentrations in serum and urine, in vivo proton magnetic resonance spectroscopy disclosed a generalized depletion of creatinine in the brain. Oral substitution of arginine, a substrate for creatine synthesis, resulted in an increase of brain guanidinoacetate as the immediate precursor of creatine but did not elevate cerebral creatine levels. In contrast, oral substitution of creatine-monohydrate led to a significant increase of brain creatine, a decrease of brain guanidinoacetate, and a normalization of creatinine in serum and urine. Phosphorus magnetic resonance spectroscopy of the brain revealed no detectable creatine-phosphate before oral substitution of creatine and a significant increase afterward. Partial restoration of cerebral creatine concentrations was accompanied by improvement of the patient's neurologic symptoms. This is the first report of a patient with complete creatine deficiency in the brain. Magnetic resonance spectroscopy during arginine and creatine treatment point to an inborn error of creatine biosynthesis at the level of guanidinoacetete-methyltransferase.
From the results of this study and the literature on the nature and pathology of VRS, we conclude that VRS on MR images of healthy individuals are normal findings, even if they are dilated. A judgement on whether dilated VRS in an individual patient is a normal variant or part of a disease process can be made by taking into account the appearance of the adjacent tissue on MRI and the clinical context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.