The effect of interstellar matter on the sun's radiation is considered with a view to explaining changes in terrestrial climate. It appears that a star in passing through a nebulous cloud will capture an amount of material which by the energy of its fall to the solar surface can bring about considerable changes in the quantity of radiation emitted. The quantity of matter gathered in by the star depends directly on the density of the cloud and inversely on the cube of its velocity relative to the cloud. Thus vastly different effects on the solar radiation can be brought about under fairly narrow ranges of density and relative velocity (ranges that are in accordance with astronomical evidence). In this way the process is able to explain the small changes in the solar radiation that are necessary to produce an ice age and, under conditions less likely to have taken place frequently, the high increase in radiation required for the Carboniferous Epoch. Despite the large effects that the mechanism can bring about, it is shown that the mass of the sun does not undergo appreciable change and hence reverts to its former luminosity once the cloud has been traversed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.