This study focuses on improving the mechanical behaviors of pultruded glass fiber-reinforced polymers (GFRP) composite material. A combined GFRP member was prepared by the insertion of a second GFRP tube inside the prototype GFRP member and then filling the compartment with epoxy resin mortar to combine both members. Analysis of the combined member was performed to consider improvement of the stiffness and strength of the material to meet design requirements. Four different types of GFRP deck specimens and five different types of GFRP beam specimens were investigated by performing the three-point bending test to obtain their ultimate strength, ultimate displacement, stiffness, and corresponding failure modes. Observations from the experiment showed that infilling the rectangular GFRP tube member can effectively increase the GFRP specimen’s stiffness and ultimate strength. Finally, the Euler beam and Timoshenko beam theories combined with the transformed section method were used to obtain the stiffness of the combined GFRP members, and then compare those stiffness with the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.