The creatine kinases (CK) regenerate ATP for cellular reactions with a high energy expenditure. While muscle CK (CKM) is expressed almost exclusively in adult skeletal and cardiac muscle, brain CK (CKB) expression is more widespread and is highest in brain glial cells. CKB expression is also high in human lung tumor cells, many of which contain mutations in p53 alleles. We bp -195 to +5 of the CKB promoter and within bp -168 to -97 of the CKM promoter. Moreover, a 112-bp fragment from the proximal rat CKM promoter (bp -168 to -57), which contained five degenerate p53-binding elements, was capable of conferring p53-mediated activation on a heterologous promoter in CV-1 cells. Also, this novel p53 sequence, when situated in the native 168-bp rat CKM promoter, conferred p53-mediated activation equal to or greater than that of the originally characterized far-upstream (bp -3160) mouse CKM p53 element. Therefore, CKB and CKM may be among the few cellular genes which could be targets of p53 in vivo. In addition, we analyzed a series of missense mutants with alterations in conserved region II of p53. Mutations affected p53 transrepression and transactivation activities differently, indicating that these activities in p53 are separable. The ability of p53 mutants to transactivate correlated well with their ability to inhibit transformation of rat embryonic fibroblasts by adenovirus Ela and activated Ras.The creatine kinases (CKs) (EC 2.7.3.2) catalyze the reversible transfer of a high-energy phosphate group from creatine phosphate to ADP, thus regenerating ATP in cellular reactions which expend large amounts of ATP, e.g., muscle contraction and ion transport (55). Vertebrates express four distinct CK enzymes which are products of separate, single-copy genes: the brain isoform (CKB), the muscle isoform (CKM), and two mitochondrial isoforms (CKmi). The active form of the cytoplasmic CK is a dimer which exists in three, electrophoretically separable isoforms: MM (predominant form in adult skeletal and cardiac muscle), BB (predominant form in the brain and embryonic skeletal and cardiac muscle), and MB (present in embryonic and cardiac muscle in moderate amounts) (55). The CKmi self-associates to form dimers and octamers located on the outer surface of the inner mitochondrial membrane (55). It has been proposed that the ATP generated in the mitochondrion is used (by CKmi) to generate creatine phosphate, which is subsequently transported to the cytoplasm and used by the cytoplasmic CK (CKB or CKM) to regenerate ATP at sites of high ATP consumption (55).Transcription of CKM is regulated in a highly tissue specific manner, being expressed almost exclusively in skeletal and cardiac muscle (23,24,35,54). In undifferentiated dividing myoblasts, CKM is not expressed and CKB is barely detectable. Early after myoblast fusion, CKB mRNA is transiently expressed and then returns to basal levels, at which time * Corresponding author. Phone: (302) 831-2281. expression of CKM mRNA begins and increases thereafter to allow CKM t...
A possible role of p53-dependent transcription in the induction of DNA repair was explored by transfecting a UV-irradiated chloramphenicol acetyl transferase (CAT) reporter plasmid (pRGC.FOS.CAT), containing a minimal FOS promoter driven by a consensus p53 binding site, into a p53 negative-mouse cell line [(10)1]. When a p53-expressing plasmid (pSV.p53) was cotransfected into these cells, CAT expression levels persisted even after prolonged UV irradiation. In comparison, CAT expression from pSV2.CAT, which lacks a p53-responsive element in its SV40 promoter, dropped o much more precipitously after UV irradiation in the absence or presence of WT p53 expression. A similar sharp drop was observed with three other constructs when the reporter gene was under the control of the ras, b-actin or fos promoter. Mouse cells (A1-5) that constitutively express a temperature-sensitive mutant (135 AV) of mouse p53 also generated, at 328C, higher levels of enzyme expressed from UV-irradiated pRGC.FOS.CAT than from UV-irradiated pSV2.CAT. The frequency of cyclobutane pyrimidine dimers in UV-irradiated pRGC.FOS.CAT was determined with T4 endo V, and the probability of having an undamaged CAT coding strand was calculated by the Poisson distribution for various times of UV-irradiation. The observed relative CAT expression levels from irradiated pSV2.CAT and pRGC.FOS.CAT in the absence of p53 were consistent with those numbers. These results show that WT p53-mediated transcription directs a resistance of the transcribed DNA to UV inactivation and reactivates the reporter gene. Furthermore, some single point substitution mutants of p53 that maintain a near normal ability to activate transcription had lost their ability to extend CAT gene expression after UV irradiation. Conversely, other mutants with reduced transcriptional activity retained this ability. This indicates that although resistance to UV inactivation is transcriptionally-dependent, these two activities are genetically distinct. These data, taken together, suggest that the transcription of UV-damaged DNA by a p53-dependent process promotes its repair.
The intracellular location and kinetics at which the simian virus 40 T antigen and the cellular protein p53 associate with one another were determined for simian virus 40-transformed mouse (215) and rat (14B) cells. Cells were labeled under pulse-chase conditions and fractionated into nuclear and cytoplasmic components, and the proteins were immunoprecipitated with monoclonal antibodies (pAb 416, 101, and 122). We found that newly made T antigen and p53 migrated to the nucleus of these cells independently; that is, in uncomplexed form. Newly made p53 was transported to the nucleus more rapidly than T antigen in both cell lines and formed a complex with a mature form of T antigen recognizable by pAb 101. This association was very rapid in both cell lines (t012, 5 to 15 min). In contrast, the time course of complex formation between newly made T antigen and the p53 in the nucleus varied with the ratio of T antigen to p53 of the cell line studied. In 215 cells, where the ratio was 3.6, the kinetics were quite slow (t4/2, 30 min), whereas in 14B cells, where the ratio was 1.7, they were quite rapid (t012, 5 min). We suggest that a competition between newly made and uncomplexed T antigen for the p53 in the nucleus is the major determinant of the rate of complex formation for newly made T antigen. Our studies indicate that this macromolecular interaction is extremely dynamic.
The creatine kinases (CK) regenerate ATP for cellular reactions with a high energy expenditure. While muscle CK (CKM) is expressed almost exclusively in adult skeletal and cardiac muscle, brain CK (CKB) expression is more widespread and is highest in brain glial cells. CKB expression is also high in human lung tumor cells, many of which contain mutations in p53 alleles. We have recently detected high levels of CKB mRNA in HeLa cells and, in this study, have tested whether this may be due to the extremely low amounts of p53 protein present in HeLa cells. Transient transfection experiments showed that wild-type mouse p53 severely repressed the rat CKB promoter in HeLa but not CV-1 monkey kidney cells, suggesting that, in HeLa but not CV-1 cells, p53 either associates with a required corepressor or undergoes a posttranslational modification necessary for CKB repression. Conversely, mouse wild-type p53 strongly activated the rat CKM promoter in CV-1 cells but not in HeLa cells, suggesting that, in CV-1 cells, p53 may associate with a required coactivator or is modified in a manner necessary for CKM activation. The DNA sequences required for p53-mediated modulations were found to be within bp -195 to +5 of the CKB promoter and within bp -168 to -97 of the CKM promoter. Moreover, a 112-bp fragment from the proximal rat CKM promoter (bp -168 to -57), which contained five degenerate p53-binding elements, was capable of conferring p53-mediated activation on a heterologous promoter in CV-1 cells. Also, this novel p53 sequence, when situated in the native 168-bp rat CKM promoter, conferred p53-mediated activation equal to or greater than that of the originally characterized far-upstream (bp -3160) mouse CKM p53 element. Therefore, CKB and CKM may be among the few cellular genes which could be targets of p53 in vivo. In addition, we analyzed a series of missense mutants with alterations in conserved region II of p53. Mutations affected p53 transrepression and transactivation activities differently, indicating that these activities in p53 are separable. The ability of p53 mutants to transactivate correlated well with their ability to inhibit transformation of rat embryonic fibroblasts by adenovirus E1a and activated Ras.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.