SummaryThree-dimensional (3D) data represent the basis for reliable quantification of complex microstructures. Therefore, the development of high-resolution tomography techniques is of major importance for many materials science disciplines. In this paper, we present a novel serial sectioning procedure for 3D analysis using a dual-beam FIB (focused ion beam). A very narrow and reproducible spacing between the individual imaging planes is achieved by using drift correction algorithms in the automated slicing procedure. The spacing between the planes is nearly of the same magnitude as the pixel resolution on scanning electron microscopy images. Consequently, the acquired stack of images can be transformed directly into a 3D data volume with a voxel resolution of 6 × 7 × 17 nm. To demonstrate the capabilities of FIB nanotomography, a BaTiO 3 ceramic with a high volume fraction of fine porosity was investigated using the method as a basis for computational microstructure analysis and the results compared with conventional physical measurements. Significant differences between the particle size distributions as measured by nanotomography and laser granulometry indicate that the latter analysis is skewed by particle agglomeration/aggregation in the raw powder and by uncertainties related to calculation assumptions. Significant differences are also observed between the results from mercury intrusion porosimetry (MIP) and 3D pore space analysis. There is strong evidence that the ink-bottle effect leads to an overestimation of the frequency of small pores in MIP. FIB nanotomography thus reveals quantitative information of structural features smaller than 100 nm in size which cannot be acquired easily by other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.