Although surgery is usually the first-line treatment for nonmelanoma skin cancers, radiotherapy (RT) may be indicated in selected cases. Radiation therapy as primary therapy can result in excellent control rates, cosmetics, and quality of life. Brachytherapy is a radiation treatment modality that offers the most conformal option to patients. A new modality for skin brachytherapy is electronic brachytherapy. This involves the placement of a high dose rate X-ray source directly in a skin applicator close to the skin surface, and therefore combines the benefits of brachytherapy with those of low energy X-ray radiotherapy. The Esteya electronic brachytherapy system is specifically designed for skin surface brachytherapy procedures. The purpose of this manuscript is to describe the clinical implementation of the new Esteya electronic brachytherapy system, which may provide guidance for users of this system. The information covered includes patient selection, treatment planning (depth evaluation and margin determination), patient marking, and setup. The justification for the hypofractionated regimen is described and compared with others protocols in the literature. Quality assurance (QA) aspects including daily testing are also included. We emphasize that these are guidelines, and clinical judgment and experience must always prevail in the care of patients, as with any medical treatment. We conclude that clinical implementation of the Esteya brachytherapy system is simple for patients and providers, and should allow for precise and safe treatment of nonmelanoma skin cancers.
PurposeThe purpose of this study is to compare high frequency ultrasonography (HFUS) and histpathologic assessment done by punch biopsy in order to determine depth of basal cell carcinoma (BCC), in both superficial and nodular BCCs prior to brachytherapy treatment.Material and methodsThis study includes 20 patients with 10 superficial and 10 nodular BCCs. First, punch biopsy was done to confirm the diagnosis and to measure tumour depth (Breslow rate). Subsequently, HFUS was done to measure tumour depth to search for correlation of these two techniques.ResultsNeither clear tendency nor significance of the punch biopsy vs. HFUS depth determination is observed. Depth value differences with both modalities resulted patient dependent and then consequence of its uncertainty. Conceptually, HFUS should determine the macroscopic lesion (gross tumour volume – GTV), while punch biopsy is able to detect the microscopic extension (clinical target volume – CTV). Uncertainties of HFUS are difficult to address, while punch biopsy is done just on a small lesion section, not necessarily the deepest one.ConclusionsAccording to the results, HFUS is less accurate at very shallow depths. Nodular cases present higher depth determination differences than superficial ones. In our clinical practice, we decided to prescribe at 3 mm depth when HFUS measurements give depth lesion values smaller than this value.
Purpose: Basal cell carcinoma (BCC) is a very common cancer in the Caucasian population. Treatment aims to eradicate the tumor with the lowest possible functional and aesthetic impact. Electronic brachytherapy (EBT) is a treatment technique currently emerging. This study aims to show the outcomes of two consecutive prospective pilot clinical trials using different radiation doses of EBT with Esteya ® EB system for the treatment of superficial and nodular basal cell carcinoma.Material and methods: Two prospective, single-center, non-randomized, pilot studies were conducted. Twenty patients were treated in each study with different doses. The first group (1) was treated with 36.6 Gy in 6 fractions of 6.1 Gy, and the second group (2) with 42 Gy in 6 fractions of 7 Gy. Cure rate, acute toxicity, and late toxicity related to cosmesis were analyzed in the two treatment groups.Results: In group 1, a complete response in 90% of cases was observed at the first year of follow-up, whereas in group 2, the complete response was 95%. The differences with reference to acute toxicity and the cosmetic results between the two treatment groups were not statistically significant.Conclusions: Our initial experience with Esteya ® EB system to treat superficial and nodular BCC shows that a dose of 36.6 Gy and 42 Gy delivered in 6 fraction of 7 Gy achieves a 90% and 95% clinical cure rate at 1 year, respectively. Both groups had a tolerable toxicity and a very good cosmesis. The role of EBT in the treatment of BCC is still to be defined. It will probably become an established option for selected patients in the near future.
Purpose Peer review has been proposed as a strategy to ensure patient safety and plan quality in radiation oncology. Despite its potential benefits, barriers commonly exist to its optimal implementation in daily clinical routine. Our purpose is to analyze peer-review process at our institution. Methods and materials Based on our group peer-review process, we quantified the rate of plan changes, time and resources needed for this process. Prospectively, data on cases presented at our institutional peer-review conference attended by physicians, resident physicians and physicists were collected. Items such as time to present per case, type of patient (adult or pediatric), treatment intent, dose, aimed technique, disease location and receipt of previous radiation were gathered. Cases were then analyzed to determine the rate of major change, minor change and plan rejection after presentation as well as the median time per session. Results Over a period of 4 weeks, 148 cases were reviewed. Median of attendants was six physicians, three in-trainingphysicians and one physicist. Median time per session was 38 (4-72) minutes. 59.5% of cases presented in 1-4 min, 32.4% in 5-9 min and 8.1% in ≥ 10 min. 79.1% of cases were accepted without changes, 11.5% with minor changes, 6% with major changes and 3.4% were rejected with indication of new presentation. Most frequent reason of change was contouring corrections (53.8%) followed by dose or fractionation (26.9%). Conclusion Everyday group consensus peer review is an efficient manner to recollect clinical and technical data of cases presented to ensure quality radiation care before initiation of treatment as well as ensuring department quality in a feedback team environment. This model is feasible within the normal operation of every radiation oncology Department.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.