Abstract:In this paper, we evaluate experimentally and model theoretically the intra-and inter-core crosstalk between the polarized core modes in single-mode multi-core fiber media including temporal and longitudinal birefringent effects. Specifically, extensive experimental results on a four-core fiber indicate that the temporal fluctuation of fiber birefringence modifies the intra-and inter-core crosstalk behavior in both linear and nonlinear optical power regimes. To gain theoretical insight into the experimental results, we introduce an accurate multi-core fiber model based on local modes and perturbation theory, which is derived from the Maxwell equations including both longitudinal and temporal birefringent effects. Numerical calculations based on the developed theory are found to be in good agreement with the experimental data.
We analyze fast- and slow-light transmission in a zigzag microring resonator chain. In the superluminal case, a new light-transmission effect is found whereby the input optical pulse is reproduced in an almost-simultaneous manner at the various system outputs. When the input carrier is tuned to a different frequency, the system permits to slow down the propagating optical signal. Between these two extreme cases, the relative delay can be tuned within a broad range. We propose, and analyze numerically, a laser-array configuration for the stable operation of active devices.
The transmission bistability of a two-coupler nonlinear ring resonator is demonstrated and described by using a geometrical method that provides a qualitative understanding of the operation characteristics of the device. Results showing the influence of the coupling constants and the linear phase are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.