The tensor product of one code endowed with the Hamming metric and one endowed with the rank metric is analyzed. This gives a code which naturally inherits the sumrank metric. Specializing to the product of a cyclic code and a skew-cyclic code, the resulting code turns out to belong to the recently introduced family of cyclic-skew-cyclic. A group theoretical description of these codes is given, after investigating the semilinear isometries in the sum-rank metric. Finally, a generalization of the Roos and the Hartmann-Tzeng bounds for the sum rank-metric is established, as well as a new lower bound on the minimum distance of one of the two codes constituting the product code.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.