Changes in the expression of brain-derived neurotrophic factor (BDNF) have been implicated in some neuropsychiatric disorders. Several antipsychotic drugs affect the expression of BDNF mRNA in different areas of the rat brain. We examined the effect of single or repeated administration of 4-[4-fluorophenyl]-1,2,3,6-tetra-hydo-1-[4-[1,-2,4-triazol-1-il]butyl]pyridine citrate) (E-5842), a sigma1 receptor ligand and putative atypical antipsychotic drug on the expression of BDNF mRNA in rats. Acute treatment with E-5842 induced a down-regulation of BDNF mRNA levels in the frontal cortex and hippocampus, while a chronic treatment had no effect. Levels of another neurotrophin, nerve growth factor (NGF), remained unaltered after either acute or chronic treatment. The effects suggest that any therapeutic properties of E-5842 are not mediated by stimulation of BDNF or NGF, whereas the regulation of these trophic factors may be part of the mechanism of action of sigma1 receptor ligands.
Based on a medicinal-chemistry-guided approach, three novel series of druglike cycloalkyl-annelated pyrazoles were synthesized and display high affinity (pKi>8) for the sigma1 receptor. Structure-affinity relationships were established, and the different scaffolds were optimized with respect to sigma1 binding and selectivity versus the sigma2 receptor and the hERG channel, resulting in selective compounds that have Ki values (for sigma1) in the subnanomolar range. Selected compounds were screened for cytochrome P450 inhibition (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4), metabolic stability (rat and human liver microsomes), and cell-membrane permeability (Caco-2). They showed favorable in vitro ADME properties as well as favorable calculated druglike and experimental physicochemical properties. Furthermore, compounds 7 f and 17 a, for example, displayed high selectivity (affinity) for the sigma1 receptor against a wide range of other receptors (>60). With these valuable tool compounds in hand, we are further exploring the role of the sigma1 receptor in relevant animal models corresponding to such medicinal indications as drug abuse, pain, depression, anxiety, and psychosis.
Fibroblast growth factor-2 (FGF-2) is a member of a large family of trophic factors whose expression is regulated under several conditions in different areas of the brain. The goal of our experiments was to determine whether the administration of 4-(4-fluorophenyl)-1,2,3,6-tetrahydro-1-[4-(1,2,4-triazol-1-il)butyl] pyridine citrate (E-5842), a sigma-1 receptor ligand and putative atypical antipsychotic, could regulate the expression of FGF-2. After chronic treatment with E-5842 (21 days, and the animals killed 24 h after the last administration), an up-regulation was observed of the expression of FGF-2 mRNA in the prefrontal cortex and the striatum, and a down-regulation of the expression of FGF-2 mRNA in the hypothalamus of the rat brain. Acute treatment with E-5842 (one single administration and animals killed 6 h later) up-regulated FGF-2 expression in the prefrontal cortex, the striatum, the hypothalamus and the hippocampus in a dose-dependent manner. The acute up-regulation was transient and disappeared 24 h after E-5842 administration. The induction of FGF-2 in the striatum after repeated administration has been described for clozapine, but our data concerning regulation in the prefrontal cortex suggest that this effect is unique to E-5852 among other antipsychotics. Given the neuroprotective activity of FGF-2, the data presented here might be relevant to the deficit in cognition and other symptoms that appear in schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.