When synthetic materials are submerged in marine environments, dissolved matter and marine organisms attach to their surfaces by a process known as marine fouling. This phenomenon may lead to diminished material performance with detrimental consequences. Bioinspired surface patterning and chemical surface modifications present promising approaches to the design of novel functional surfaces that can prevent biofouling phenomena. In this study, we report the synergistic effects of surface patterns, inspired by the marine decapod crab Myomenippe hardwickii in combination with chemical surface modifications toward suppressing marine fouling. M. hardwickii is known to maintain a relatively clean carapace although the species occurs in biofouling communities of tropical shallow subtidal coastal waters. Following the surface analysis of selected specimens, we designed hierarchical surface microtopographies that replicate the critical features observed on the crustacean surface. The micropatterned surfaces were modified with zwitterionic polymer brushes or with layer-by-layer deposited polyelectrolyte multilayers to enhance their antifouling and/or fouling-release potential. Chemically modified and unmodified micropatterned surfaces were subjected to extensive fouling tests, including laboratory assays against barnacle settlement and algae adhesion, and field static immersion tests. The results show a statistically significant reduction in settlement on the micropatterned surfaces as well as a synergistic effect when the microtopographies are combined with grafted polymer chains.
Sequential layer-by-layer (LbL) deposition of polyelectrolytes followed by chemical cross-linking was investigated as a method to fabricate functional amphiphilic surfaces for marine biofouling prevention applications. A novel polyanion, grafted with amphiphilic perfluoroalkyl polyethylene glycol (fPEG) side chains, was synthesized and subsequently used to introduce amphiphilic character to the LbL film. The structure of the polyanion was confirmed by FTIR and NMR. Amphiphilicity of the film assembly was demonstrated by both water and hexadecane static contact angles. XPS studies of the cross-linked and annealed amphiphilic LbL films revealed the increased concentration of fPEG content at the film interface. In antifouling assays, the amphiphilic LbL films effectively prevented the adhesion of the marine bacterium Pseudomonas (NCIMB 2021).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.