Although simultaneous P-removal and nitrate reduction has been observed in laboratory studies as well as full-scale plants, there are contradictory reports on the ability of PAO I to efficiently use nitrate as electron acceptor. Such discrepancy could be due to other microbial groups performing partial denitrification from nitrate to nitrite. The denitrification capacities of two different cultures, a highly enriched PAO I and a PAO I-GAO cultures were assessed through batch activity tests conducted before and after acclimatization to nitrate. Negligible anoxic phosphate uptake coupled with a reduction of nitrate was observed in the highly enriched PAO I culture. On the opposite, the PAO I-GAO culture showed a higher anoxic phosphate uptake activity. Both cultures exhibited good anoxic phosphate uptake activity with nitrite (8.7 ± 0.3 and 9.6 ± 1.8 mgPO-P/gVSS.h in the PAO I and PAO I-GAO cultures, respectively). These findings suggest that other microbial populations, such as GAOs, were responsible to reduce nitrate to nitrite in this EBPR system, and that PAO I used the nitrite generated for anoxic phosphate uptake. Moreover, the simultaneous denitrification and phosphate removal process using nitrite as electron acceptor may be a more sustainable process as can: i) reduce the carbon consumption, ii) reduce oxygen demand of WWTP, and iii) due to a lower growth yield contribute to a lower sludge production.
Thiothrix caldifontis was the dominant microorganism (with an estimated bio-volume of 65 ± 3%) in a lab-scale enhanced biological phosphorus removal (EBPR) system containing 100 mg of sulphide per litre in the influent. After a gradual exposure to the presence of sulphide, the EBPR system initially dominated by Candidatus Accumulibacter phosphatis Clade I (98 ± 3% bio-volume) (a known polyphosphate accumulating organism, PAO) became enriched with T. caldifontis. Throughout the different operating conditions studied, practically 100% phosphate removal was always achieved. The gradual increase of the sulphide content in the medium (added to the anaerobic stage of the alternating anaerobic-aerobic sequencing batch reactor) and the adjustment of the aerobic hydraulic retention time played a major role in the enrichment of T. caldifontis. T. caldifontis exhibited a mixotrophic metabolism by storing carbon anaerobically as poly-β-hydroxy-alkanoates (PHA) and generating the required energy through the hydrolysis of polyphosphate. PHA was used in the aerobic period as carbon and energy source for growth, polyphosphate, and glycogen formation. Apparently, extra energy was obtained by the initial accumulation of sulphide as an intracellular sulphur, followed by its gradual oxidation to sulphate. The culture enriched with T. caldifontis was able to store approximately 100 mg P/g VSS. This research suggests that T. caldifontis could behave like PAO with a mixotrophic metabolism for phosphorus removal using an intracellular sulphur pool as energy source. These findings can be of major interest for the biological removal of phosphorus from wastewaters with low organic carbon concentrations containing reduced S-compounds like those (pre-)treated in anaerobic systems or from anaerobic sewers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.