SYNOPSISPoly (acrylic acid) ( PAAc) films were treated with either a n argon or a tetrafluoromethane (CF,) plasma and subsequently analyzed with X-ray photoelectron spectroscopy (XPS). PAAc films were decarboxylated during both types of plasma treatments. In addition, during the CF4 plasma treatment, the PAAc films became fluorinated. The plasma phase during the argon plasma treatment of PAAc films was investigated with optical emission spectroscopy. It was shown that during this plasma treatment carbon dioxide, water, and possibly hydrogen were liberated from the PAAc surface. By covering the surface of PAAc films with different materials (lithium fluoride, UV fused silica, and glass) during the plasma treatment, it was possible to differentiate between photochemically induced and particleinduced changes of the surface. This method was used to show that decarboxylation during the argon plasma treatment was caused by vacuum UV radiation (wavelength < 150 nm) and the decarboxylation/ fluorination during the CF4 plasma treatment was induced by reactive fluorine-containing species from the plasma phase. Furthermore, during both processes, etching of the PAAc surface occurred. Based on these mechanisms, kinetic models were derived that could be used to describe the measured kinetic data adequately. 0 1994
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.