Glossina sp. the tsetse fly that transmits trypanosomes causing the Human or the Animal African Trypanosomiasis (HAT or AAT) can harbor symbiotic bacteria that are known to play a crucial role in the fly's vector competence. We hypothesized that other bacteria could be present, and that some of them could also influence the fly's vector competence. In this context the objectives of our work were: (a) to characterize the bacteria that compose the G. palpalis palpalis midgut bacteriome, (b) to evidence possible bacterial community differences between trypanosome-infected and non-infected fly individuals from a given AAT and HAT focus or from different foci using barcoded Illumina sequencing of the hypervariable V3-V4 region of the 16S rRNA gene. Forty G. p. palpalis flies, either infected by Trypanosoma congolense or uninfected were sampled from three trypanosomiasis foci in Cameroon. A total of 143 OTUs were detected in the midgut samples. Most taxa were identified at the genus level, nearly 50% at the species level; they belonged to 83 genera principally within the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Prominent representatives included Wigglesworthia (the fly's obligate symbiont), Serratia, and Enterobacter hormaechei. Wolbachia was identified for the first time in G. p. palpalis. The average number of bacterial species per tsetse sample was not significantly different regarding the fly infection status, and the hierarchical analysis based on the differences in bacterial community structure did not provide a clear clustering between infected and non-infected flies. Finally, the most important result was the evidence of the overall very large diversity of intestinal bacteria which, except for Wigglesworthia, were unevenly distributed over the sampled flies regardless of their geographic origin and their trypanosome infection status.
Antagonistic coevolution between hosts and parasites is a key process in the genesis and maintenance of biological diversity. Whereas coevolutionary dynamics show distinct patterns under favourable environmental conditions, the effects of more realistic, variable conditions are largely unknown. We investigated the impact of a fluctuating environment on antagonistic coevolution in experimental microcosms of Pseudomonas fluorescens SBW25 and lytic phage SBWΦ2. High-frequency temperature fluctuations caused no deviations from typical coevolutionary arms race dynamics. However, coevolution was stalled during periods of high temperature under intermediate-and low-frequency fluctuations, generating temporary coevolutionary cold spots. Temperature variation affected population density, providing evidence that eco-evolutionary feedbacks act through variable bacteria-phage encounter rates. Our study shows that environmental fluctuations can drive antagonistic species interactions into and out of coevolutionary cold and hot spots. Whether coevolution persists or stalls depends on the frequency of change and the environmental optima of both interacting players.
Radon transport in porous materials is strongly influenced by the presence of water. It is also necessary to be able to numerically control the effects of this parameter. The radon concentration and radon exhalation rate have been determined by simulation in various building materials containing an increasing water content. It has been proved that the presence of water does not involve the same variations in the concentration on the surface of the medium, according to its porosity. For porous media with low porosity like concrete or granite, ( < 0:2), the radon concentration and radon exhalation rate sharply increase with water until the volumetric water content becomes higher than 30%. At this point, radon emanation plays an important role, in relation to the molecular diffusion process. For materials with medium porosities (e.g., limestone, brick, cement: 0:3 < < 0:45), the concentration was observed to increase up to a volumetric water content of about 10% and then decreased from there. In this case, the molecular diffusion has a greater effect due to a greater quantity of pores in the material. For a small water content, this parameter tends to make the radon concentration decrease at the surface of the medium. These simulations have been compared with experimental analysis and are in strong accordance with the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.