Imaging polarimetry of Uranus and Neptune in the R, i, and z bands are presented. In all observations a radial limb polarization on the order of 1% was detected with a position angle perpendicular to the limb. The polarization is higher in both planets for the shorter wavelength bands. As a first approximation, the polarization seems to be equally strong along the entire limb. This is unlike Jupiter and Saturn, where significant limb polarization is only observed at the poles. We determined flux-weighted averages of the limb polarization and radial limb polarization profiles, and investigated the degradation and cancellation effects in the polarization signal due to the seeing-limited spatial resolution of our observations. Taking this into account we derived corrected values for the limb polarization in Uranus and Neptune. The results are compared with analytic models for Rayleigh scattering atmospheres for the semi-infinite case and finite layers with ground albedo. The comparison shows that the detected polarization is compatible with expectations. This indicates that limb-polarization measurements offer a powerful diagnostic tool for investigating the properties of scattering particles in the upper atmospheres of Uranus and Neptune, in particular if more sophisticated numerical modeling of the limb polarization becomes available. It is also concluded from the overall strength of the limb polarization that the disk-integrated polarization of Uranus and Neptune for large phase angles is high (p > 20%). This is of interest for future polarimetric detections of extra-solar planets with atmospheric properties similar to Uranus and Neptune.
Context. R Aqr is a symbiotic binary system consisting of a mira variable, a hot companion with a spectacular jet outflow, and an extended emission line nebula. Because of its proximity to the Sun, this object has been studied in much detail with many types of high resolution imaging and interferometric techniques. We have used R Aqr as test target for the visual camera subsystem ZIMPOL, which is part of the new extreme adaptive optics (AO) instrument SPHERE at the Very Large Telescope (VLT). Aims. We describe SPHERE/ZIMPOL test observations of the R Aqr system taken in Hα and other filters in order to demonstrate the exceptional performance of this high resolution instrument. We compare our observations with data from the Hubble Space Telescope (HST) and illustrate the complementarity of the two instruments. We use our data for a detailed characterization of the inner jet region of R Aqr. Methods. We analyze the high resolution ≈25 mas images from SPHERE/ZIMPOL and determine from the Hα emission the position, size, geometric structure, and line fluxes of the jet source and the clouds in the innermost region <2 (<400 AU) of R Aqr. The data are compared to simultaneous HST line filter observations. The Hα fluxes and the measured sizes of the clouds yield Hα emissivities for many clouds from which one can derive the mean density, mass, recombination time scale, and other cloud parameters. for the "outer" clouds around 300 AU, N e ≈ 3 × 10 6 cm −3 for the "inner" clouds around 50 AU, and even higher for the central jet source. The high N e of the clouds implies short recombination or variability timescales of a year or shorter. Conclusions. Hα high resolution data provide a lot of diagnostic information for the ionized jet gas in R Aqr. Future Hα observations will provide the orientation of the orbital plane of the binary and allow detailed hydrodynamical investigations of this jet outflow and its interaction with the wind of the red giant companion.
Context. The SPHERE "planet finder" is an extreme adaptive optics (AO) instrument for high resolution and high contrast observations at the Very Large Telescope (VLT). We describe the Zurich Imaging Polarimeter (ZIMPOL), the visual focal plane subsystem of SPHERE, which pushes the limits of current AO systems to shorter wavelengths, higher spatial resolution, and much improved polarimetric performance. Aims. We present a detailed characterization of SPHERE/ZIMPOL which should be useful for an optimal planning of observations and for improving the data reduction and calibration. We aim to provide new benchmarks for the performance of high contrast instruments, in particular for polarimetric differential imaging. Methods. We have analyzed SPHERE/ZIMPOL point spread functions (PSFs) and measure the normalized peak surface brightness, the encircled energy, and the full width half maximum (FWHM) for different wavelengths, atmospheric conditions, star brightness, and instrument modes. Coronagraphic images are described and the peak flux attenuation and the off-axis flux transmission are determined. Simultaneous images of the coronagraphic focal plane and the pupil plane are analyzed and the suppression of the diffraction rings by the pupil stop is investigated. We compared the performance at small separation for different coronagraphs with tests for the binary α Hyi with a separation of 92 mas and a contrast of ∆m ≈ 6 m . For the polarimetric mode we made the instrument calibrations using zero polarization and high polarization standard stars and here we give a recipe for the absolute calibration of polarimetric data. The data show small (<1 mas) but disturbing differential polarimetric beam shifts, which can be explained as Goos-Hähnchen shifts from the inclined mirrors, and we discuss how to correct this effect. The polarimetric sensitivity is investigated with non-coronagraphic and deep, coronagraphic observations of the dust scattering around the symbiotic Mira variable R Aqr. Results. SPHERE/ZIMPOL reaches routinely an angular resolution (FWHM) of 22−28 mas, and a normalized peak surface brightness of SB 0 − m star ≈ −6.5 m arcsec −2 for the V-, R-and I-band. The AO performance is worse for mediocre 1.0 seeing conditions, faint stars m R 9 m , or in the presence of the "low wind" effect (telescope seeing). The coronagraphs are effective in attenuating the PSF peak by factors of >100, and the suppression of the diffracted light improves the contrast performance by a factor of approximately two in the separation range 0.06 −0.20 . The polarimetric sensitivity is ∆p < 0.01% and the polarization zero point can be calibrated to better than ∆p ≈ 0.1%. The contrast limits for differential polarimetric imaging for the 400 s I-band data of R Aqr at a separation of ρ = 0.86 are for the surface brightness contrast SB pol ( ρ)−m star ≈ 8 m arcsec −2 and for the point source contrast m pol ( ρ)−m star ≈ 15 m and much lower limits are achievable with deeper observations. Conclusions. SPHERE/ZIMPOL achieves imaging performances ...
We present ground-based limb polarization measurements of Jupiter and Saturn consisting of full disk imaging polarimetry for the wavelength 7300Å and spatially resolved (long slit) spectropolarimetry covering the wavelength range 5200 to 9350Å.For the polar region of Jupiter we find for λ = 6000Å a very strong radial (perpendicular to the limb) fractional polarization with a seeing corrected maximum of about +11.5 % in the South and +10.0 % in the North. This indicates that the polarizing haze layer is thicker at the South pole. The polar haze layers extend down to 58• in latitude. The derived polarization values are much higher than reported in previous studies because of the better spatial resolution of our data and an appropriate consideration of the atmospheric seeing. Model calculations demonstrate that the high limb polarization can be explained by strongly polarizing (p ≈ 1.0), high albedo (ω ≈ 0.98) haze particles with a scattering asymmetry parameter of g ≈ 0.6 as expected for aggregate particles of the type described by West and Smith (1991). The deduced particle parameters are distinctively different when compared to lower latitude regions.The spectropolarimetry of Jupiter shows a decrease in the polar limb polarization towards longer wavelengths and a significantly enhanced polarization in strong methane bands when compared to the adjacent continuum. This is a natural outcome for a highly polarizing haze layer above an atmosphere where multiple scatterings are suppressed in absorption bands. For lower latitudes the fractional polarization is small, negative, and it depends only little on wavelength except for the strong CH 4 -band at 8870Å.The South pole of Saturn shows a lower polarization (p ≈ 1.0 − 1.5 %) than the poles of Jupiter. The spectropolarimetric signal for Saturn decrease rapidly with wavelength and shows no significant enhancements in the fractional polarization in the absorption bands. These properties can be explained by a vertically extended stratospheric haze region composed of small particles < 100 nm as suggested previously by Karkoschka and Tomasko (2005).In addition we find in the V-and R-band a previously not observed strong polarization feature (p = 1.5 − 2.0 %) near the equator of Saturn. The origin of this polarization signal is unclear but it could be related to a seasonal effect.Finally we discuss the potential of ground-based limb polarization measurements for the investigation of the scattering particles in the atmospheres of Jupiter and Saturn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.