In the canonical model for tidal disruption events (TDEs), the stellar debris circularizes quickly to form an accretion disk of size about twice the orbital pericenter of the star. Most TDEs and candidates discovered in the optical/UV have broad optical emission lines with complex and diverse profiles of puzzling origin. Liu et al. recently developed a relativistic elliptical disk model of constant eccentricity in radius for the broad optical emission lines of TDEs and well reproduced the double-peaked line profiles of the TDE candidate PTF09djl with a large and extremely eccentric accretion disk. In this paper, we show that the optical emission lines of the TDE ASASSN-14li with radically different profiles are well modelled with the relativistic elliptical disk model, too. The accretion disk of ASASSN-14li has an eccentricity 0.97 and semimajor axis of 847 times the Schwarzschild radius (r S ) of the black hole (BH). It forms as the consequence of tidal disruption of a star passing by a massive BH with orbital pericenter 25r S . The optical emission lines of ASASSN-14li are powered by an extended X-ray source of flat radial distribution overlapping the bulk of the accretion disk and the single-peaked asymmetric line profiles are mainly due to the orbital motion of the emitting matter within the disk plane of inclination about 26 • and of pericenter orientation closely toward the observer. Our results suggest that modelling the complex line profiles is powerful in probing the structures of accretion disks and coronal X-ray sources in TDEs.
The project MOMO (Multiwavelength Observations and Modelling of OJ 287) was set up to test predictions of binary supermassive black hole (SMBH) scenarios and to understand disk-jet physics of the blazar OJ 287. After a correction, the precessing binary (PB) SMBH model predicted the next main outburst of OJ 287 in 2022 October, making the outburst well observable and the model testable. We have densely covered this period in our ongoing multi-frequency radio, optical, UV, and X-ray monitoring. The predicted outburst was not detected. Instead, OJ 287 was at low optical–UV emission levels, declining further into November. The predicted thermal bremsstrahlung spectrum was not observed either, at any epoch. Further, applying scaling relations, we estimate a SMBH mass of OJ 287 of 108 M⊙. The latest in a sequence of deep low-states that recur every 1–2 yrs is used to determine an upper limit on the Eddington ratio and on the accretion-disk luminosity. This limit is at least a factor of 10 lower than required by the PB model with its massive primary SMBH of >1010M⊙. All these results favor alternative binary SMBH models of OJ 287 that neither require strong orbital precession nor a very large mass of the primary SMBH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.