Strong mitigation of edge-localized modes has been observed on Experimental Advanced Superconducting Tokamak, when lower hybrid waves (LHWs) are applied to H-mode plasmas with ion cyclotron resonant heating. This has been demonstrated to be due to the formation of helical current filaments flowing along field lines in the scrape-off layer induced by LHW. This leads to the splitting of the outer divertor strike points during LHWs similar to previous observations with resonant magnetic perturbations. The change in the magnetic topology has been qualitatively modeled by considering helical current filaments in a field-line-tracing code.
Using a 2 MW 2.45 GHz lower hybrid wave (LHW) system installed in experimental advanced superconducting tokamak, we have systematically carried out LHW-plasma coupling and lower hybrid current drive experiments in both divertor (double null and lower single null) and limiter plasma configuration with plasma current (I p ) $ 250 kA and central line averaged density (n e ) $ 1.0-1.3 Â 10 19 m À3 recently. Results show that the reflection coefficient (RC) first is flat up to some distance between plasma and LHW grill, and then increases with the distance. Studies indicate that with the same plasma parameters, the best coupling is obtained in the limiter case (with plasma leaning on the inner wall), followed by the lower single null, and the one with the worst coupling is the double null configuration, explained by different magnetic connection length. The RCs in the different poloidal rows show that they have different coupling characteristics, possibly due to local magnetic connection length. Current drive efficiency has been investigated by a least squares fit with N peak == ¼ 2:1, where N peak == is the peak value of parallel refractive index of the launched wave. Results show that there is no obvious difference in the current drive efficiency between double null and lower single null cases, whereas the efficiency is somewhat small in the limiter configuration. This is in agreement with the ray tracing=Fokker-Planck code simulation by LUKE=C3PO and can be interpreted by the power spectrum up-shift factor in different plasma configurations. A transformer recharge is realized with $0.8 MW LHW power and the energy conversion efficiency from LHW to poloidal field energy is about 2%.
EAST has been equipped with two high power lower hybrid current drive (LHCD) systems with operating frequencies of 2.45 GHz and 4.6 GHz. Comparative LHCD experiments with the two different frequencies were performed in the same conditions of plasma for the first time. It was found that current drive (CD) efficiency and plasma heating effect are much better for 4.6 GHz LH waves than for the one with 2.45 GHz. High confinement mode (H-mode) discharges with 4.6 GHz LHCD as the sole auxiliary heating source have been obtained in EAST and the confinement is higher with respect to that produced previously by 2.45 GHz. A combination of ray-tracing and Fokker-Planck calculations by using the C3PO/LUKE codes was performed in order to explain the different experimental observations between the two waves. In addition, the frequency spectral broadening of the two LH wave operating frequencies was surveyed by using a radio frequency probe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.