Biological active materials such as bacterial biofilms and eukaryotic cells thrive in confined micro-spaces. Here, we show through numerical simulations that confinement can serve as a mechanical guidance to achieve distinct modes of collective invasion when combined with growth dynamics and the intrinsic activity of biological materials. We assess the dynamics of the growing interface and classify these collective modes of invasion based on the activity of the constituent particles of the growing matter. While at small and moderate activities the active material grows as a coherent unit, we find that blobs of active material collectively detach from the cohort above a well-defined activity threshold. We further characterise the mechanical mechanisms underlying the crossovers between different modes of invasion and quantify their impact on the overall invasion speed.
Cell migration is of major importance for the understanding of phenomena such as morphogenesis, cancer metastasis, or wound healing. In many of these situations cells are under external confinement. In this work we show by means of computer simulations with a Cellular Potts Model (CPM) that the presence of a bottleneck in an otherwise straight channel has a major influence on the internal organisation of an invading cellular monolayer and the motion of individual cells therein. Comparable to a glass or viscoelastic material, the cell sheet is found to exhibit features of both classical solids and classical fluids. The local ordering on average corresponds to a regular hexagonal lattice, while the relative motion of cells is unbounded. Compared to an unconstricted channel, we observe that a bottleneck perturbs the formation of regular hexagonal arrangements in the epithelial sheet and leads to pile-ups and backflow of cells near the entrance to the constriction, which also affects the overall invasion speed. The scale of these various phenomena depends on the dimensions of the different channel parts, as well as the shape of the funnel domain that connects wider to narrower regions.
The presence of an ipsilateral PComA is a predictor for excellent clinical outcome independently from the technical success of mechanical recanalization. This finding provides insights into the changes of circulation in patients suffering from an acute stroke and underlines the importance of collateralization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.