This paper presents a new structure as a simple method at two uncertainties (i.e., aleatory and epistemic) that result from variabilities inherent in nature and a lack of knowledge. Aleatory and epistemic uncertainties use the concept of the entropy and Dempster-Shafer (D-S) theory, respectively. Accordingly, we propose the generalized Shannon entropy in the D-S theory as a measure of uncertainty. This theory has been originated in the work of Dempster on the use of probabilities with upper and lower bounds. We describe the framework of our approach to assess upper and lower uncertainty bounds for each state of a system. In this process, the uncertainty bound is calculated with the generalized Shannon entropy in the D-S theory in different states of these systems. The probabilities of each state are interval values. In the current study, the effect of epistemic uncertainty is considered between events with respect to the non-probabilistic method (e.g., D-S theory) and the aleatory uncertainty is evaluated by using an entropy index over probability distributions through interval-valued bounds. Therefore, identification of total uncertainties shows the efficiency of uncertainty quantification.
This paper presents a new structure as a simple method at two uncertainties (i.e., aleatory and epistemic) that result from variabilities inherent in nature and a lack of knowledge. Aleatory and epistemic uncertainties use the concept of the entropy and Dempster-Shafer (D-S) theory, respectively. Accordingly, we propose the generalized Shannon entropy in the D-S theory as a measure of uncertainty. This theory has been originated in the work of Dempster on the use of probabilities with upper and lower bounds. We describe the framework of our approach to assess upper and lower uncertainty bounds for each state of a system. In this process, the uncertainty bound is calculated with the generalized Shannon entropy in the D-S theory in different states of these systems. The probabilities of each state are interval values. In the current study, the effect of epistemic uncertainty is considered between events with respect to the non-probabilistic method (e.g., D-S theory) and the aleatory uncertainty is evaluated by using an entropy index over probability distributions through interval-valued bounds. Therefore, identification of total uncertainties shows the efficiency of uncertainty quantification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.