The early universe is believed to have undergone a QCD phase transition to hadrons at about 10µs after the big bang. We study such a transition in the context of the non-detailed balance Horava-Lifshitz theory by investigating the effects of the dynamical coupling constant λ in a flat universe. The evolution of the relevant physical quantities, namely the energy density ρ, temperature T , scale factor a and the Hubble parameter H is investigated before, during and after the phase transition, assumed to be of first order. Also, in view of the recent lattice QCD simulations data, we study a cross-over phase transition of the early universe whose results are based on two different sets of lattice data.
Based on the assumptions of the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electroweak transition has occurred at approximately 10µ seconds after the Big Bang to convert a plasma of free quarks and gluons into hadrons. We consider such a phase transition in the context of a deformed Horava-Lifshitz cosmology. The Friedmann equation for the deformed Horava-Lifshitz universe is obtained using the entropic interpretation of gravity, proposed by Verlinde. We investigate the effects of the parameter ω appearing in the theory on the evolution of the physical quantities relevant to a description of the early universe, namely, the energy density and temperature before, during and after the phase transition. Finally, we study the cross-over phase transition in both high and low temperature regions in view of the recent lattice QCD simulations data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.