Roughened titanium (Ti) surfaces have been widely used for dental implants. In recent years, there has been the tendency to replace Ti plasma-sprayed surfaces by sandblasted and acid-etched surfaces in order to enhance osseous apposition. Another approach has been the utilization of hydroxyapatite (HA)-coated implants. This study examines the effect of two roughened Ti dental implant surfaces on the osteoblastic phenotype of human bone-derived cells (HBDC) and compares this behavior to that for cells on an HA-coated surface. Test materials were an acid-etched and sandblasted Ti surface (Ti-DPS), a porous Ti plasma-sprayed coating (Ti-TPS), and a plasma-sprayed porous HA coating (HA). Smooth Ti machined surfaces served as control (Ti-ma). HBDC were grown on the substrata for 3, 7, 14, and 21 days, counted and probed for various bone-related mRNAs and proteins (type I collagen, osteocalcin, osteopontin, osteonectin, alkaline phosphatase, and bone sialoprotein). All dental implant surfaces significantly affected cellular growth and the temporal expression of an array of bone-related genes and proteins. HA-coated Ti had the most effect on osteoblastic differentiation inducing a greater expression of an array of osteogenic markers than recorded for cells grown on Ti-DPS and Ti-TPS, thus suggesting that the HA-coated surface may possess a higher potency to enhance osteogenesis. Furthermore, Ti-DPS surfaces induced greater osteoblast proliferation and differentiation than Ti-TPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.