The p-type semiconductor Cu3PSe4 has recently been established to have a direct bandgap of 1.4 eV and an optical absorption spectrum similar to GaAs [Applied Physics Letters, 99, 181903 (2011)], suggesting a possible application as a solar photovoltaic absorber. Here we calculate the thermodynamic stability, defect energies and concentrations, and several material properties of Cu3PSe4 using a wholly GGA+U method (the generalized gradient approximation of density functional theory with a Hubbard U term included for the Cu-d orbitals). We find that two low energy acceptor defects, the copper vacancy VCu and the phosphorus-on-selenium antisite PSe, establish the p-type behavior and likely prevent any n-type doping near thermal equilibrium. The GGA+U defect calculation method is shown to yield more accurate results than the more standard method of applying post-calculation GGA+U -based bandgap corrections to strictly GGA defect calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.