In recent years, the development of high-throughput technologies for obtaining sequence data leveraged the possibility of analysis of protein data in silico. However, when it comes to viral polyprotein interaction studies, there is a gap in the representation of those proteins, given their size and length. The prepare for studies using state-of-the-art techniques such as Machine Learning, a good representation of such proteins is a must. We present an alternative to this problem, implementing a fragmentation and modeling protocol to prepare those polyproteins in the form of peptide fragments. Such procedure is made by several scripts, implemented together on the workflow we call PolyPRep, a tool written in Python script and available in GitHub. This software is freely available only for noncommercial users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.