We analyze the nucleosynthesis yields of various Type Ia supernova explosion simulations including pure detonations in sub-Chandrasekhar mass white dwarfs; double detonations and pure helium detonations of sub-Chandrasekhar mass white dwarfs with an accreted helium envelope; a violent merger model of two white dwarfs; and deflagrations and delayed detonations in Chandrasekhar mass white dwarfs. We focus on the iron peak elements Mn, Zn, and Cu. To this end, we also briefly review the different burning regimes and production sites of these elements, as well as the results of abundance measurements and several galactic chemical evolution studies. We find that super-solar values of [Mn/Fe] are not restricted to Chandrasekhar mass explosion models. Scenarios including a helium detonation can significantly contribute to the production of Mn, in particular the models proposed for calcium-rich transients. Although Type Ia supernovae are often not accounted for as production sites of Zn and Cu, our models involving helium shell detonations can produce these elements in super-solar ratios relative to Fe. Our results suggest a re-consideration of Type Ia supernova yields in galactic chemical evolution models. A detailed comparison with observations can provide new insight into the progenitor and explosion channels of these events.
Context. Due to the ever increasing number of observations during the past decades, Type Ia supernovae are nowadays regarded as a heterogeneous class of optical transients consisting of several subtypes. One of the largest of these subclasses is the class of Type Iax supernovae. They have been suggested to originate from pure deflagrations in carbon-oxygen Chandrasekhar mass white dwarfs because the outcome of this explosion scenario is in general agreement with their subluminous nature. Aims. Although a few deflagration studies have already been carried out, the full diversity of the class has not been captured yet. This, in particular, holds for the faint end of the subclass. We therefore present a parameter study of single-spot ignited deflagrations in Chandrasekhar mass white dwarfs varying the location of the ignition spark, the central density, the metallicity, and the composition of the white dwarf. We also explore a rigidly rotating progenitor to investigate whether the effect of rotation can spawn additional trends. Methods. We carried out three-dimensional hydrodynamic simulations employing the LEAFS code. Subsequently, detailed nucleosynthesis results were obtained with the nuclear network code YANN. In order to compare our results to observations, we calculated synthetic spectra and light curves with the ARTIS code. Results. The new set of models extends the range in brightness covered by previous studies to the lower end. Our single-spot ignited explosions produce 56Ni masses from 5.8 × 10−3 to 9.2 × 10−2 M⊙. In spite of the wide exploration of the parameter space, the main characteristics of the models are primarily driven by the mass of 56Ni and form a one-dimensional sequence. Secondary parameters seem to have too little impact to explain the observed trend in the faint part of the Type Iax supernova class. We report kick velocities of the gravitationally bound explosion remnants from 6.9 to 369.8 km s−1. The magnitude as well as the direction of the natal kick is found to depend on the strength of the deflagration. Conclusions. This work corroborates the results of previous studies of deflagrations in Chandrasekhar mass white dwarfs. The wide exploration of the parameter space in initial conditions and viewing angle effects in the radiative transfer lead to a significant spread in the synthetic observables. The trends in observational properties toward the faint end of the class are, however, not reproduced. This motivates a quantification of the systematic uncertainties in the modeling procedure and the influence of the 56Ni-rich bound remnant to get to the bottom of these discrepancies. Moreover, while the pure deflagration scenario remains a favorable explanation for bright and intermediate luminosity Type Iax supernovae, our results suggest that other mechanisms also contribute to this class of events.
Progress in the three-dimensional modeling of supernovae (SNe) prompts us to revisit the supernova remnant (SNR) phase. We continue our study of the imprint of a thermonuclear explosion on the SNR it produces, which we started with a delayed detonation model of a Chandrasekhar-mass white dwarf. Here we compare two different types of explosion models, each with two variants: two delayed detonation models (N100ddt, N5ddt) and two pure deflagration models (N100def, N5def), where the N number parameterizes the ignition. The output of each SN simulation is used as input to an SNR simulation carried on until 500 yr after the explosion. While all SNR models become more spherical over time and overall display the theoretical structure expected for a young SNR, clear differences are visible among the models, depending on the geometry of the ignition and on the presence or not of detonation fronts. Compared to N100 models, N5 models have a strong dipole component and produce asymmetric remnants. N5def produces a regular-looking, but offset remnant, while N5ddt produces a two-sided remnant. Pure deflagration models exhibit specific traits: a central overdensity, because of the incomplete explosion, and a network of seam lines across the surface, boundaries between burning cells. Signatures from the SN dominate the morphology of the SNR up to 100–300 yr after the explosion, depending on the model, and are still measurable at 500 yr, which may provide a way of testing explosion models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.