The potential and benefits of nanoparticles in nanobiotechnology have been enthusiastically discussed in recent literature; however, little is known about the potential risks of contamination by accidental contact during production or use. Although theories of transdermal drug delivery suggest that skin structure and composition do not allow the penetration of materials larger than 600 Da, some articles on particle penetration into the skin have been recently published. Consequently, we wanted to evaluate whether metallic nanoparticles smaller than 10 nm could penetrate and eventually permeate the skin. Two different stabilized nanoparticle dispersions were applied to excised human skin samples using vertical diffusion cells. At established time points, solutions in receiving chambers were quantified for nanoparticle concentration, and skin was processed for light transmission and electron microscope examination. The results of this study showed that nanoparticles were able to penetrate the hair follicle and stratum corneum (SC), occasionally reaching the viable epidermis. Yet, nanoparticles were unable to permeate the skin. These results represent a breakthrough in skin penetration because it is early evidence where rigid nanoparticles have been shown to passively reach the viable epidermis through the SC lipidic matrix.
To determine whether there are structural differences in two topologically separated, biochemically defined mitochondrial populations in rat heart myocytes, the interior of these organelles was examined by high-resolution scanning electron microscopy. On the basis of a count of 159 in situ subsarcolemmal mitochondria (SSM, i.e., those that directly abut the sarcolemma), these organelles possess mainly lamelliform cristae (77%), whereas the cristae in in situ interfibrillar mitochondria (IFM, i.e., those situated between the myofibrils, n = 300) are mainly tubular (55%) or a mixture of tubular and lamelliform (24%). Isolated SSM (n = 374), similar to their in situ counterparts, have predominantly lamelliform cristae (75%). The proportions of crista types in isolated IFM (n = 337) have been altered, with only 20% of these organelles retaining exclusively tubular cristae, whereas 58% are mixed; of the latter, lamelliform cristae predominate. This finding suggests that, in contrast to SSM, the cristae in IFM are structurally plastic, changing during isolation. These observations on >1,000 organelles provide the first quantitative morphological evidence for definitive differences between the two populations of cardiac mitochondria.
Interfibrillar mitochondria (IFM) of the heart in aged Fischer 344 rats show a biochemical defect which might be reflected in their morphology. We examined by high resolution scanning electron microscopy over 5,500 mitochondria to determine if a concomitant structural alteration existed. This methodology provides a means of examining mitochondrial cristae in three dimensions. Cristae of in situ subsarcolemmal mitochondria (SSM) and of IFM in both 6 and 24 month old Fischer rats are predominantly lamelliform. When isolated, these organelles, whether of SSM or IFM origin, display enhanced heterogeneity, but they have similar crista morphology irrespective of the age of the rat. Crista configuration does not play a major role in age-related cardiac mitochondrial defects.Cardiac mitochondria exist in two functionally distinct populations. Subsarcolemmal mitochondria (SSM) are situated beneath the sarcolemma, whereas interfibrillar mitochondria (IFM) reside between the myofibrils (Palmer et al., 1977). Biochemically speaking, aging selectively alters IFM, with the protein yield and rate of oxidative phosphorylation being decreased, but SSM remain unaffected (Fannin et al., 1999). Despite these biochemical differences, transmission electron microscopy does not reveal any obvious morphologic changes in cardiac mitochondria associated with aging (Fannin et al., 1999).Osmium extraction of tissues and pellets of isolated mitochondria combined with high resolution scanning electron microscopy (HRSEM) permits the examination of the interior of these organelles. Our use of osmium extraction-HRSEM allowed us to establish the threedimensional structure of cristae in more than a thousand in situ and isolated cardiac mitochondria in or derived from young adult Sprague-Dawley rats (Riva et al., 2005). SSM contain largely lamelliform cristae; in contrast, cristae in IFM display mostly tubular morphology (Riva et al., 2005). This result provides a morphological underpinning for the Corresponding Author: Charles L. Hoppel, M.D., Case Western Reserve University School of Medicine, Department of Pharmacology, 10900 Euclid Avenue, Cleveland, Phone: (216) FAX: (216) 368-3395, E-mail: charles.hoppel@case.edu Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. previous biochemical studies of rat heart mitochondria that had shown functional differences between SSM and IFM. NIH Public AccessWe now turn our attention to the Fisher 344 rat, a long-established model for aging studies (Coleman et al., 1977). In this aging model, there is a disconnect between metabolic changes, which are highly si...
The luminal membrane of salivary acinar cells creates a specialized cell surface area that accepts exocytosis and undergoes dynamic changes during secretion. These changes were visualized three-dimensionally from both the inside and outside of the cell in human parotid and submandibular glands, by application of in vitro secretory stimulation and then of OsO4 maceration to remove cytoplasmic organelles by varying degrees. In control glands treated without secretagogues, the luminal surface of serous acinar cells bore well-developed microvilli with only an occasional incidence of exocytotic profiles. Following treatment with the beta-adrenergic agonist, isoproterenol, considerable shortening and loss of microvilli occurred along the luminal membrane where, on its cytoplasmic side, many protuberances of sizes similar to or smaller than those of single secretory granules (approximately 1 micron in diameter) appeared. The cytoplasmic surface of these protuberances exhibited small vesicles (approximately 100-150 nm in diameter) that, by transmission electron microscopy, were shown to be coated pits or vesicles present on or around the exocytosed granule membranes. Treatment of tissues with the muscarinic agonist carbachol also caused a decrease of microvilli and the appearance of protrusions at the luminal membrane. However, unlike isoproterenol treatment, many of these protrusions were devoid of small pits or vesicles and were much larger than a single secretory granule. These results indicate that (1) secretory stimulation causes the dynamic transformation of microvilli at the luminal membrane, where granule docking and membrane fusion take place, and (2) after fusion, the exocytosed membranes are processed differently, by coated pit/vesicle mediated or non-mediated mechanisms, according to the autonomic receptor control.
The identification of Diopatra species lacks of clear diagnostic features of taxonomic importance and the knowledge of their reproductive characters is scant. The spermatozoa of Diopatra neapolitana were ultrastructurally investigated by electron microscopy in order to correlate the mode of reproduction with sperm cells morphology. The mature male gamete has a depressed subspherical nucleus, a cone-like acrosome, and a long flagellum. The acrosome is conical in shape and radially symmetrical, with a base diameter twice the height. Within the acrosome vesicle, the basal region includes a very electron-dense thickened ring composed of paracrystalline substances. The subacrosomal space is filled with a poorly electron-dense material, with straight filaments axially arranged to form a perforatorium. The nucleus contains the complete axial canal, holding the hind perforatorium region. The middle piece consists of five mitochondria with well-distinct membranes and tubulo-vesicular cristae. Two centrioles are located perpendicularly to each other. The proximal one lies in the central fossa and the distal one, slightly eccentric to the sperm axis, anchors to the plasma membrane by nine satellite rays of the pericentriolar complex. The axoneme has a 9+2 arrangement of microtubules. In general, the spermatozoon of D. neapolitana conforms exteriorly to the typical ect-aquasperm; the acrosome complex ultrastructure, however, shows noticeable modifications from the basic form. This finding agrees with the previously observed reproductive pattern (broadcast spawning-free-swimming larvae) of D. neapolitana belonging to Santa Gilla population, and may be helpful to solve the taxonomic problems of the D. neapolitana complex as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.