Isomorph theory is employed in order to establish a mapping between the bridge function of Coulomb and Yukawa one-component plasmas. Within an exact invariance ansatz for the bridge functions and by capitalizing on the availability of simulation-extracted Coulomb bridge functions, an analytical Yukawa bridge function is derived which is inserted into the integral theory framework. In spite of its simplicity and computational speed, the proposed integral approach exhibits an excellent agreement with computer simulations of dense Yukawa liquids without invoking adjustable parameters.
It has been recently conjectured that bridge functions remain nearly invariant along phase diagram lines of constant excess entropy for the broad class of R-simple liquids. To test this hypothesis, the bridge functions of Yukawa systems are computed outside the correlation void with the Ornstein-Zernike inversion method employing structural input from ultra-accurate molecular dynamics simulations and inside the correlation void with the cavity distribution method employing structural input from ultra-long specially designed molecular dynamics simulations featuring a tagged particle pair. Yukawa bridge functions are revealed to be isomorph invariant to a very high degree. The observed invariance is not exact, however, since isomorphic deviations exceed the overall uncertainties.
In numerous realizations of complex plasmas, dust-dust interactions are characterized by two screening lengths and are thus better described by a combination of Yukawa potentials. The present work investigates the static correlations and the thermodynamics of repulsive dense bi-Yukawa fluids based on the fact that such strongly coupled systems exhibit isomorph invariance. The strong virialpotential energy correlations are demonstrated with the aid of molecular dynamics simulations, an accurate analytical expression for the isomorph family of curves is obtained and an empirical expression for the fluid-solid phase-coexistence line is proposed. The isomorph-based empirically modified hypernetted-chain approach, grounded on the ansatz of isomorph invariant bridge functions, is then extended to such systems and the resulting structural properties show an excellent agreement with the results of computer simulations. A simple and accurate closed-form expression is obtained for the excess internal energy of dense bi-Yukawa fluids by capitalizing on the compact parameterization offered by the Rosenfeld-Tarazona decomposition in combination with the Rosenfeld scaling, which opens up the energy route to thermodynamics.
A novel dielectric scheme is proposed for strongly coupled electron liquids that handles quantum mechanical effects beyond the random phase approximation level and treats electronic correlations within the integral equation theory of classical liquids. The self-consistent scheme features a complicated dynamic local field correction functional and its formulation is guided by ab initio path integral Monte Carlo simulations. Remarkably, our scheme is capable to provide unprecedently accurate results for the static structure factor with the exception of the Wigner crystallization vicinity, despite the absence of adjustable or empirical parameters.
A spacecraft‐charging mitigation scheme necessary for the operation of a high‐power electron beam in the low‐density magnetosphere is analyzed. The scheme is based on a plasma contactor, that is, a high‐density charge‐neutral plasma emitted prior to and during beam emission and its ability to emit high ion currents without strong space‐charge limitations. A simple theoretical model for the transient of the spacecraft potential and contactor expansion during beam emission is presented. The model focuses on the contactor ion dynamics and is valid in the limit when the ion contactor current is equal to the beam current. The model is found in very good agreement with particle‐in‐cell simulations over a large parametric study that varies the initial expansion time of the contactor, the contactor current, and the ion mass. The model highlights the physics of the spacecraft‐charging mitigation scheme, indicating that the most important part of the dynamics is the evolution of the outermost ion front, which is pushed away by the charge accumulated in the system by the beam. The model can be also used to estimate the long‐time evolution of the spacecraft potential. For a short contactor expansion (0.3‐ or 0.6‐ms helium plasma or 0.8‐ms argon plasma, both with 1‐mA current) it yields a peak spacecraft potential of the order of 1–3 kV. This implies that a 1‐mA relativistic electron beam would be easily emitted by the spacecraft.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.