This paper proposes an improved impedance based fault location scheme based on system analysis at non-fundamental frequencies. The fault is treated as a voltage source that injects high frequency components into the system and the analysis is carried out using these injected components. The proposed method only requires local measurements at the substation and therefore is classified as a single end method. The new contribution is that the proposed method uses the distributed parameter line model to account for inductive and capacitive effects of the line. It has been evaluated on the IEEE 34-bus feeder which is based on an actual distribution system which has the typical features such as non-homogeneous feeder sections, asymmetrical line configurations, unbalanced loads and single and three-phase laterals. The fault point, fault resistance and fault inception angle have been varied to check their influence on the accuracy of the method. The simulation results demonstrate the accuracy of the proposed method where for most cases, the error in fault location is less than 50 m.
This paper presents an analytical technique for fault location in distribution systems in presence of distributed generation (DG). The presence of DG changes the nature of power flow from unidirectional to multidirectional. Therefore, the accuracy of impedance-based fault location methods will be affected by the presence of DG. The proposed technique is a modification of impedance-based methods to be suitable for systems containing DG based on voltage and current measurements at the power substation. To evaluate this technique, it is implemented on an 11 kV feeder using ATP/EMTP package. The results achieved ensure the validity and accuracy of the technique
This paper presents a combined double-end and single-end fault locator for distribution systems. The technique lies under the impedance based category and uses the fault generated high frequency components to locate the faults. The combination of double-end and single-end allows the method to discriminate between faults on the main feeder and those on laterals. Also, the method only requires a short data window as it depends on the high frequency components. The evaluation of the method considers different system and fault parameters e.g. loading taps, loading unbalance, fault type and fault resistance. To validate the proposed technique, the IEEE 34 nodes system is used to simulate different test cases.
A note on versions:The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription. Abstract-This paper presents a fault location technique for distribution systems. It is a two end impedance based technique that uses the fault generated transients to estimate the fault distance over a broad range of frequencies. Then, curve fitting is applied to find the final estimated fault distance. Firstly, the paper introduces the method for the system represented as a lumped RL model. Then, generalized to consider the distribution line capacitance. The technique accounts for presence of loading taps, heterogeneous feeder sections, single phase, two phase and three phase loads and unbalance in distribution system. Single line to ground, line to line, and three phase faults are considered at different fault resistance values up to 100 Ω. Also, the effect of fault inception angle and resolution of analogue to digital converter is investigated. IEEE 34 nodes system is used to evaluate the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.